--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9139204232337705 - name: Recall type: recall value: 0.9276205392102025 - name: F1 type: f1 value: 0.9207195203197868 - name: Accuracy type: accuracy value: 0.9817306623032075 --- # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0662 - Precision: 0.9139 - Recall: 0.9276 - F1: 0.9207 - Accuracy: 0.9817 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 293 | 0.0861 | 0.8786 | 0.9014 | 0.8899 | 0.9765 | | 0.1963 | 2.0 | 586 | 0.0682 | 0.9031 | 0.9218 | 0.9124 | 0.9805 | | 0.1963 | 3.0 | 879 | 0.0662 | 0.9139 | 0.9276 | 0.9207 | 0.9817 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.12.0 - Datasets 2.10.1 - Tokenizers 0.11.0