theArif commited on
Commit
e104994
·
1 Parent(s): fadfef0

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -18
README.md CHANGED
@@ -19,21 +19,21 @@ model-index:
19
  name: conll2003
20
  type: conll2003
21
  config: conll2003
22
- split: train
23
  args: conll2003
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.9280336581045173
28
  - name: Recall
29
  type: recall
30
- value: 0.9376887795055375
31
  - name: F1
32
  type: f1
33
- value: 0.9328362361582551
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.9842248240583348
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.0593
47
- - Precision: 0.9280
48
- - Recall: 0.9377
49
- - F1: 0.9328
50
- - Accuracy: 0.9842
51
 
52
  ## Model description
53
 
@@ -67,8 +67,8 @@ More information needed
67
 
68
  The following hyperparameters were used during training:
69
  - learning_rate: 2e-05
70
- - train_batch_size: 16
71
- - eval_batch_size: 16
72
  - seed: 42
73
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
  - lr_scheduler_type: linear
@@ -78,14 +78,14 @@ The following hyperparameters were used during training:
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
- | 0.2474 | 1.0 | 878 | 0.0695 | 0.9205 | 0.9268 | 0.9236 | 0.9818 |
82
- | 0.0538 | 2.0 | 1756 | 0.0585 | 0.9266 | 0.9348 | 0.9307 | 0.9838 |
83
- | 0.0297 | 3.0 | 2634 | 0.0593 | 0.9280 | 0.9377 | 0.9328 | 0.9842 |
84
 
85
 
86
  ### Framework versions
87
 
88
- - Transformers 4.24.0
89
- - Pytorch 1.12.1
90
- - Datasets 2.9.0
91
  - Tokenizers 0.11.0
 
19
  name: conll2003
20
  type: conll2003
21
  config: conll2003
22
+ split: validation
23
  args: conll2003
24
  metrics:
25
  - name: Precision
26
  type: precision
27
+ value: 0.9139204232337705
28
  - name: Recall
29
  type: recall
30
+ value: 0.9276205392102025
31
  - name: F1
32
  type: f1
33
+ value: 0.9207195203197868
34
  - name: Accuracy
35
  type: accuracy
36
+ value: 0.9817306623032075
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.0662
47
+ - Precision: 0.9139
48
+ - Recall: 0.9276
49
+ - F1: 0.9207
50
+ - Accuracy: 0.9817
51
 
52
  ## Model description
53
 
 
67
 
68
  The following hyperparameters were used during training:
69
  - learning_rate: 2e-05
70
+ - train_batch_size: 48
71
+ - eval_batch_size: 48
72
  - seed: 42
73
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
  - lr_scheduler_type: linear
 
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 1.0 | 293 | 0.0861 | 0.8786 | 0.9014 | 0.8899 | 0.9765 |
82
+ | 0.1963 | 2.0 | 586 | 0.0682 | 0.9031 | 0.9218 | 0.9124 | 0.9805 |
83
+ | 0.1963 | 3.0 | 879 | 0.0662 | 0.9139 | 0.9276 | 0.9207 | 0.9817 |
84
 
85
 
86
  ### Framework versions
87
 
88
+ - Transformers 4.26.1
89
+ - Pytorch 1.12.0
90
+ - Datasets 2.10.1
91
  - Tokenizers 0.11.0