update model card README.md
Browse files
README.md
CHANGED
|
@@ -19,21 +19,21 @@ model-index:
|
|
| 19 |
name: conll2003
|
| 20 |
type: conll2003
|
| 21 |
config: conll2003
|
| 22 |
-
split:
|
| 23 |
args: conll2003
|
| 24 |
metrics:
|
| 25 |
- name: Precision
|
| 26 |
type: precision
|
| 27 |
-
value: 0.
|
| 28 |
- name: Recall
|
| 29 |
type: recall
|
| 30 |
-
value: 0.
|
| 31 |
- name: F1
|
| 32 |
type: f1
|
| 33 |
-
value: 0.
|
| 34 |
- name: Accuracy
|
| 35 |
type: accuracy
|
| 36 |
-
value: 0.
|
| 37 |
---
|
| 38 |
|
| 39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 43 |
|
| 44 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
|
| 45 |
It achieves the following results on the evaluation set:
|
| 46 |
-
- Loss: 0.
|
| 47 |
-
- Precision: 0.
|
| 48 |
-
- Recall: 0.
|
| 49 |
-
- F1: 0.
|
| 50 |
-
- Accuracy: 0.
|
| 51 |
|
| 52 |
## Model description
|
| 53 |
|
|
@@ -67,8 +67,8 @@ More information needed
|
|
| 67 |
|
| 68 |
The following hyperparameters were used during training:
|
| 69 |
- learning_rate: 2e-05
|
| 70 |
-
- train_batch_size:
|
| 71 |
-
- eval_batch_size:
|
| 72 |
- seed: 42
|
| 73 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 74 |
- lr_scheduler_type: linear
|
|
@@ -78,14 +78,14 @@ The following hyperparameters were used during training:
|
|
| 78 |
|
| 79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
| 80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
| 81 |
-
|
|
| 82 |
-
| 0.
|
| 83 |
-
| 0.
|
| 84 |
|
| 85 |
|
| 86 |
### Framework versions
|
| 87 |
|
| 88 |
-
- Transformers 4.
|
| 89 |
-
- Pytorch 1.12.
|
| 90 |
-
- Datasets 2.
|
| 91 |
- Tokenizers 0.11.0
|
|
|
|
| 19 |
name: conll2003
|
| 20 |
type: conll2003
|
| 21 |
config: conll2003
|
| 22 |
+
split: validation
|
| 23 |
args: conll2003
|
| 24 |
metrics:
|
| 25 |
- name: Precision
|
| 26 |
type: precision
|
| 27 |
+
value: 0.9139204232337705
|
| 28 |
- name: Recall
|
| 29 |
type: recall
|
| 30 |
+
value: 0.9276205392102025
|
| 31 |
- name: F1
|
| 32 |
type: f1
|
| 33 |
+
value: 0.9207195203197868
|
| 34 |
- name: Accuracy
|
| 35 |
type: accuracy
|
| 36 |
+
value: 0.9817306623032075
|
| 37 |
---
|
| 38 |
|
| 39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
|
| 43 |
|
| 44 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
|
| 45 |
It achieves the following results on the evaluation set:
|
| 46 |
+
- Loss: 0.0662
|
| 47 |
+
- Precision: 0.9139
|
| 48 |
+
- Recall: 0.9276
|
| 49 |
+
- F1: 0.9207
|
| 50 |
+
- Accuracy: 0.9817
|
| 51 |
|
| 52 |
## Model description
|
| 53 |
|
|
|
|
| 67 |
|
| 68 |
The following hyperparameters were used during training:
|
| 69 |
- learning_rate: 2e-05
|
| 70 |
+
- train_batch_size: 48
|
| 71 |
+
- eval_batch_size: 48
|
| 72 |
- seed: 42
|
| 73 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 74 |
- lr_scheduler_type: linear
|
|
|
|
| 78 |
|
| 79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
| 80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
| 81 |
+
| No log | 1.0 | 293 | 0.0861 | 0.8786 | 0.9014 | 0.8899 | 0.9765 |
|
| 82 |
+
| 0.1963 | 2.0 | 586 | 0.0682 | 0.9031 | 0.9218 | 0.9124 | 0.9805 |
|
| 83 |
+
| 0.1963 | 3.0 | 879 | 0.0662 | 0.9139 | 0.9276 | 0.9207 | 0.9817 |
|
| 84 |
|
| 85 |
|
| 86 |
### Framework versions
|
| 87 |
|
| 88 |
+
- Transformers 4.26.1
|
| 89 |
+
- Pytorch 1.12.0
|
| 90 |
+
- Datasets 2.10.1
|
| 91 |
- Tokenizers 0.11.0
|