Talha Javed Mukhtar
commited on
Commit
·
a32fc23
1
Parent(s):
36beb2f
First push
Browse files- AVAXUSDT_x22.xlsx_binary_classification_model.h5 +0 -0
- README.md +1 -0
- model.py +24 -0
AVAXUSDT_x22.xlsx_binary_classification_model.h5
ADDED
|
Binary file (77.6 kB). View file
|
|
|
README.md
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Simple NN that takes in 27 parameters related to a cryptocurrency and classifies the datapoint as 0 OR 1.
|
model.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tensorflow as tf
|
| 2 |
+
|
| 3 |
+
class CryptoBinaryClassifier(tf.keras.Model):
|
| 4 |
+
def __init__(self, *args, **kwargs):
|
| 5 |
+
super(CryptoBinaryClassifier, self).__init__()
|
| 6 |
+
# Define your model architecture here
|
| 7 |
+
self.model = tf.keras.Sequential([
|
| 8 |
+
tf.keras.layers.Input(shape=(27,)),
|
| 9 |
+
tf.keras.layers.Dense(64, activation='relu'),
|
| 10 |
+
tf.keras.layers.Dense(32, activation='relu'),
|
| 11 |
+
tf.keras.layers.Dense(1, activation='sigmoid')
|
| 12 |
+
])
|
| 13 |
+
|
| 14 |
+
def call(self, inputs, training=False):
|
| 15 |
+
return self.model(inputs)
|
| 16 |
+
|
| 17 |
+
def __init__(self, *args, **kwargs):
|
| 18 |
+
super(CryptoBinaryClassifier, self).__init__()
|
| 19 |
+
# Load your pre-trained weights
|
| 20 |
+
self.load_weights('AVAXUSDT_x22.xlsx_binary_classification_model.h5')
|
| 21 |
+
|
| 22 |
+
def predict(self, input_data):
|
| 23 |
+
# Preprocess input_data if necessary
|
| 24 |
+
return self(input_data)
|