--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - output: url: images/output_1.png text: Anime, a girl with blue hair holding a sword - output: url: images/output_6.png text: Anime, a samurai standing on a cliff during sunset - output: url: images/output_8.png text: Anime, a wizard boy reading a floating book in a library - output: url: images/output_10.png text: Anime, a fantasy castle surrounded by clouds and flying ships base_model: Qwen/Qwen-Image instance_prompt: Anime license: apache-2.0 --- # Anime-Otaku-Qwen-Image ## Model description # Anime-Otaku-Qwen-Image **Anime-Otaku-Qwen-Image** is a LoRA fine-tuned adapter for the [Qwen-Image](https://huggingface.co/Qwen/Qwen-Image) model, trained on the [Anime Gen v2 dataset](https://huggingface.co/datasets/xingjianleng/anime_gen_v2). It specializes in generating high-quality anime-style images. --- ## 🚀 Features * Fine-tuned on **xingjianleng/anime_gen_v2** dataset. * Generates **anime characters, scenes, and illustrations** in a consistent style. * LoRA adapter (\~rank 16) — lightweight and easy to use with the base Qwen-Image model. * Compatible with Hugging Face Diffusers pipelines. --- ## 🖌️ Usage 1. **Install dependencies** (if not installed): ```bash pip install diffusers transformers accelerate safetensors torch ``` 2. **Load base Qwen-Image and LoRA adapter**: ```python from diffusers import DiffusionPipeline import torch pipe = DiffusionPipeline.from_pretrained( "Qwen/Qwen-Image", torch_dtype=torch.bfloat16 ).to("cuda") # Load Anime-Otaku LoRA adapter pipe.load_lora_weights("suayptalha/Anime-Otaku-Qwen-Image") # Recommended prompt format prompt = "Anime, a girl with blue hair holding a sword" # Generate an anime image (1024x1024 recommended) image = pipe(prompt, height=1024, width=1024, num_inference_steps=40, guidance_scale=7.5).images[0] # Save output image.save("output.png") ``` > Make sure your prompt starts with **"Anime, "** to match the training data format. --- ## ⚠️ Notes * **Recommended inference resolution:** 1024×1024. You can reduce to 512×512 if GPU memory is limited. * Use `torch_dtype=torch.bfloat16` or `torch.float16` for efficient VRAM usage. * Enable attention slicing to reduce memory usage: ```python pipe.enable_attention_slicing() ``` --- ## Trigger words You should use `Anime` to trigger the image generation. ## Download model [Download](/suayptalha/Anime-Otaku-Qwen-Image/tree/main) them in the Files & versions tab.