File size: 2,833 Bytes
015eab9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
base_model:
- gru-audio-binary
datasets:
- mozilla-foundation/common_voice_11_0
language:
- zh
metrics:
- accuracy
pipeline_tag: audio-classification
tags:
- speaker_dialect_classification
library_name: transformers
---


# shanghai-binary

Binary classifier: **Shanghai** vs **Not-Shanghai** (audio FBANK β†’ GRU β†’ MLP).

## Files
- `model.safetensors` β€” PyTorch weights (safetensors)
- `config.json` β€” model architecture
- `preprocessor_config.json` β€” audio feature extraction settings
- `label_mapping.json` β€” index β†’ label

## Inference (PyTorch)
```python
import torch, json, numpy as np, librosa
from safetensors.torch import load_file as load_safetensors

# Load config
import json, os
model_dir = "./hf/models/shanghai-binary"
cfg = json.load(open(os.path.join(model_dir, "config.json")))
pp  = json.load(open(os.path.join(model_dir, "preprocessor_config.json")))
lm  = json.load(open(os.path.join(model_dir, "label_mapping.json")))

# Define the model class you trained (LanNetBinary)
# (Same as in your training notebook)
class LanNetBinary(torch.nn.Module):
    def __init__(self, input_dim=40, hidden_dim=512, num_layers=2):
        super().__init__()
        self.gru = torch.nn.GRU(input_dim, hidden_dim, num_layers=num_layers, batch_first=True)
        self.linear2 = torch.nn.Linear(hidden_dim, 192)
        self.linear3 = torch.nn.Linear(192, 2)
    def forward(self, x):
        out, _ = self.gru(x)
        last = out[:, -1, :]
        x = self.linear2(last)
        x = self.linear3(x)
        return x

# Load weights
model = LanNetBinary(cfg["input_dim"], cfg["hidden_dim"], cfg["num_layers"])
sd = load_safetensors(os.path.join(model_dir, "model.safetensors"))
model.load_state_dict(sd, strict=True)
model.eval()

# Feature extraction should match preprocessor_config.json
def fbanks_from_array(y, sr=pp["sampling_rate"], n_mels=pp["n_mels"], n_fft=pp["n_fft"], hop_length=pp["hop_length"], max_len=pp["max_len_frames"]):
    mel = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=n_mels, n_fft=n_fft, hop_length=hop_length, power=2.0)
    fbanks = librosa.power_to_db(mel).T
    T = fbanks.shape[0]
    if T < max_len:
        import numpy as np
        fbanks = np.pad(fbanks, ((0, max_len - T), (0, 0)), mode="constant")
    else:
        fbanks = fbanks[:max_len, :]
    return torch.tensor(fbanks, dtype=torch.float32).unsqueeze(0)  # (1, T, F)

# Example: predict from a waveform array "y" at 16kHz
# y, _ = librosa.load("example.wav", sr=pp["sampling_rate"])
# x = fbanks_from_array(y)
# with torch.no_grad():
#     logits = model(x)
#     pred = int(torch.argmax(logits, dim=1))
#     print(lm[str(pred)])
```

## References

- Model based from [https://github.com/Colt1990/chinese-dialect-recognition/tree/master](https://github.com/Colt1990/chinese-dialect-recognition/tree/master)