import spaces from typing import Any from typing import Callable from typing import ParamSpec import torch from torch.utils._pytree import tree_map P = ParamSpec("P") TRANSFORMER_HIDDEN_DIM = torch.export.Dim("hidden", min=4096, max=8212) # Specific to Flux. More about this is available in # https://huggingface.co/blog/zerogpu-aoti TRANSFORMER_DYNAMIC_SHAPES = { "hidden_states": {1: TRANSFORMER_HIDDEN_DIM}, "img_ids": {0: TRANSFORMER_HIDDEN_DIM}, } INDUCTOR_CONFIGS = { "conv_1x1_as_mm": True, "epilogue_fusion": False, "coordinate_descent_tuning": True, "coordinate_descent_check_all_directions": True, # "max_autotune": True, # not very helpful. "triton.cudagraphs": True, } def compile_transformer(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs): def f(): with spaces.aoti_capture(pipeline.transformer) as call: pipeline(*args, **kwargs) print("Inputs captured.") dynamic_shapes = tree_map(lambda v: None, call.kwargs) dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES exported = torch.export.export( mod=pipeline.transformer, args=call.args, kwargs=call.kwargs, dynamic_shapes=dynamic_shapes ) print("Export done.") return spaces.aoti_compile(exported, INDUCTOR_CONFIGS) print(f"{pipeline.transformer.device=}") compiled_transformer = f() print("Compilation done.") return compiled_transformer