Flux-Compiled-Graph / optimization.py
sayakpaul's picture
sayakpaul HF Staff
up
f61fb8b
import spaces
from typing import Any
from typing import Callable
from typing import ParamSpec
import torch
from torch.utils._pytree import tree_map
P = ParamSpec("P")
TRANSFORMER_HIDDEN_DIM = torch.export.Dim("hidden", min=4096, max=8212)
# Specific to Flux. More about this is available in
# https://huggingface.co/blog/zerogpu-aoti
TRANSFORMER_DYNAMIC_SHAPES = {
"hidden_states": {1: TRANSFORMER_HIDDEN_DIM},
"img_ids": {0: TRANSFORMER_HIDDEN_DIM},
}
INDUCTOR_CONFIGS = {
"conv_1x1_as_mm": True,
"epilogue_fusion": False,
"coordinate_descent_tuning": True,
"coordinate_descent_check_all_directions": True,
# "max_autotune": True, # not very helpful.
"triton.cudagraphs": True,
}
def compile_transformer(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
def f():
with spaces.aoti_capture(pipeline.transformer) as call:
pipeline(*args, **kwargs)
print("Inputs captured.")
dynamic_shapes = tree_map(lambda v: None, call.kwargs)
dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
exported = torch.export.export(
mod=pipeline.transformer, args=call.args, kwargs=call.kwargs, dynamic_shapes=dynamic_shapes
)
print("Export done.")
return spaces.aoti_compile(exported, INDUCTOR_CONFIGS)
print(f"{pipeline.transformer.device=}")
compiled_transformer = f()
print("Compilation done.")
return compiled_transformer