Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| from typing import Any | |
| from typing import Callable | |
| from typing import ParamSpec | |
| import torch | |
| from torch.utils._pytree import tree_map | |
| P = ParamSpec("P") | |
| TRANSFORMER_HIDDEN_DIM = torch.export.Dim("hidden", min=4096, max=8212) | |
| # Specific to Flux. More about this is available in | |
| # https://huggingface.co/blog/zerogpu-aoti | |
| TRANSFORMER_DYNAMIC_SHAPES = { | |
| "hidden_states": {1: TRANSFORMER_HIDDEN_DIM}, | |
| "img_ids": {0: TRANSFORMER_HIDDEN_DIM}, | |
| } | |
| INDUCTOR_CONFIGS = { | |
| "conv_1x1_as_mm": True, | |
| "epilogue_fusion": False, | |
| "coordinate_descent_tuning": True, | |
| "coordinate_descent_check_all_directions": True, | |
| # "max_autotune": True, # not very helpful. | |
| "triton.cudagraphs": True, | |
| } | |
| def compile_transformer(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs): | |
| def f(): | |
| with spaces.aoti_capture(pipeline.transformer) as call: | |
| pipeline(*args, **kwargs) | |
| print("Inputs captured.") | |
| dynamic_shapes = tree_map(lambda v: None, call.kwargs) | |
| dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES | |
| exported = torch.export.export( | |
| mod=pipeline.transformer, args=call.args, kwargs=call.kwargs, dynamic_shapes=dynamic_shapes | |
| ) | |
| print("Export done.") | |
| return spaces.aoti_compile(exported, INDUCTOR_CONFIGS) | |
| print(f"{pipeline.transformer.device=}") | |
| compiled_transformer = f() | |
| print("Compilation done.") | |
| return compiled_transformer | |