File size: 1,012 Bytes
51857fd
4179e65
 
 
 
51857fd
d64b334
 
92c0992
 
 
 
 
 
 
 
 
d64b334
 
92c0992
488e146
92c0992
488e146
b78c9fe
488e146
d64b334
 
 
 
 
 
51857fd
1878582
d64b334
1878582
 
92c0992
d64b334
70716e0
1878582
d64b334
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import gradio
from transformers import GPT2LMHeadModel, GPT2Tokenizer, AdamW
from transformers import AutoTokenizer, AutoModelForCausalLM





model_name = "zaanind/gpt2_finetune_alpaca"


tokenizer = GPT2Tokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token

model = GPT2LMHeadModel.from_pretrained(model_name)



def translate(text):
    prompt = f"<s>[INST] translate this sentence to sinhala - {text} [/INST] sure,here the translation of the provided text - "
   
    input_ids = tokenizer.encode(prompt, return_tensors='pt')
    output = model.generate(input_ids, max_length=250, num_return_sequences=1)  
    translation = tokenizer.decode(output[0], skip_special_tokens=True)
    
    return translation

    
def nmtapifunc(text):
    text = translate(text)
    return text 

gradio_interface = gradio.Interface(
  fn=nmtapifunc,
  inputs="text",
  outputs="text",
  title="ZoomAI Inference Server",
  description="",
  article="© Zaanind 2023-2024"
)
gradio_interface.launch()