Spaces:
Running
Running
Commit
·
924af64
1
Parent(s):
24a45a8
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,25 +1,16 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import PIL
|
| 3 |
from PIL import Image
|
| 4 |
import numpy as np
|
| 5 |
-
import os
|
| 6 |
import uuid
|
| 7 |
import torch
|
| 8 |
-
from torch import autocast
|
| 9 |
import cv2
|
| 10 |
-
from io import BytesIO
|
| 11 |
-
|
| 12 |
-
from matplotlib import pyplot as plt
|
| 13 |
-
from torchvision import transforms
|
| 14 |
|
| 15 |
import io
|
| 16 |
-
import logging
|
| 17 |
import multiprocessing
|
| 18 |
import random
|
| 19 |
import time
|
| 20 |
import imghdr
|
| 21 |
-
from pathlib import Path
|
| 22 |
-
from typing import Union
|
| 23 |
from loguru import logger
|
| 24 |
|
| 25 |
from lama_cleaner.model_manager import ModelManager
|
|
@@ -33,7 +24,6 @@ try:
|
|
| 33 |
except:
|
| 34 |
pass
|
| 35 |
|
| 36 |
-
|
| 37 |
from lama_cleaner.helper import (
|
| 38 |
load_img,
|
| 39 |
numpy_to_bytes,
|
|
@@ -58,19 +48,13 @@ HF_TOKEN_SD = os.environ.get('HF_TOKEN_SD')
|
|
| 58 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 59 |
print(f'device = {device}')
|
| 60 |
|
| 61 |
-
def
|
| 62 |
-
w = imghdr.what("", img_bytes)
|
| 63 |
-
if w is None:
|
| 64 |
-
w = "jpeg"
|
| 65 |
-
return w
|
| 66 |
-
|
| 67 |
-
def read_content(file_path):
|
| 68 |
"""read the content of target file
|
| 69 |
"""
|
| 70 |
-
with open(file_path, '
|
| 71 |
content = f.read()
|
| 72 |
return content
|
| 73 |
-
|
| 74 |
def get_image_enhancer(scale = 2, device='cuda:0'):
|
| 75 |
from basicsr.archs.rrdbnet_arch import RRDBNet
|
| 76 |
from realesrgan import RealESRGANer
|
|
@@ -105,7 +89,9 @@ def get_image_enhancer(scale = 2, device='cuda:0'):
|
|
| 105 |
)
|
| 106 |
return img_enhancer
|
| 107 |
|
| 108 |
-
image_enhancer =
|
|
|
|
|
|
|
| 109 |
|
| 110 |
model = None
|
| 111 |
|
|
@@ -119,7 +105,7 @@ def model_process(image, mask, img_enhancer):
|
|
| 119 |
original_shape = image.shape
|
| 120 |
interpolation = cv2.INTER_CUBIC
|
| 121 |
|
| 122 |
-
size_limit = 1080
|
| 123 |
if size_limit == "Original":
|
| 124 |
size_limit = max(image.shape)
|
| 125 |
else:
|
|
@@ -193,10 +179,10 @@ def predict(input, img_enhancer):
|
|
| 193 |
return None
|
| 194 |
if image_type == 'filepath':
|
| 195 |
# input: {'image': '/tmp/tmp8mn9xw93.png', 'mask': '/tmp/tmpn5ars4te.png'}
|
| 196 |
-
origin_image_bytes =
|
| 197 |
print(f'origin_image_bytes = ', type(origin_image_bytes), len(origin_image_bytes))
|
| 198 |
image, _ = load_img(origin_image_bytes)
|
| 199 |
-
mask, _ = load_img(
|
| 200 |
elif image_type == 'pil':
|
| 201 |
# input: {'image': pil, 'mask': pil}
|
| 202 |
image_pil = input['image']
|
|
@@ -206,22 +192,17 @@ def predict(input, img_enhancer):
|
|
| 206 |
output = model_process(image, mask, img_enhancer)
|
| 207 |
return output
|
| 208 |
|
|
|
|
| 209 |
css = '''
|
| 210 |
.container {max-width: 100%;margin: auto;padding-top: 1.5rem}
|
| 211 |
-
|
| 212 |
#work-container {min-width: min(160px, 100%) !important;flex-grow: 0 !important}
|
| 213 |
-
#image_upload{min-height:610px}
|
| 214 |
-
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 620px}
|
| 215 |
#image_output{margin: 0 auto; text-align: center;width:640px}
|
| 216 |
#erase-container{margin: 0 auto; text-align: center;width:150px;border-width:5px;border-color:#2c9748}
|
| 217 |
#enhancer-checkbox{width:520px}
|
| 218 |
#enhancer-tip{width:450px}
|
| 219 |
#enhancer-tip-div{text-align: left}
|
| 220 |
#prompt-container{margin: 0 auto; text-align: center;width:fit-content;min-width: min(150px, 100%);flex-grow: 0; flex-wrap: nowrap;}
|
| 221 |
-
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
|
| 222 |
-
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
|
| 223 |
-
.dark .footer {border-color: #303030}
|
| 224 |
-
.dark .footer>p {background: #0b0f19}
|
| 225 |
#image_upload .touch-none{display: flex}
|
| 226 |
@keyframes spin {
|
| 227 |
from {
|
|
@@ -232,15 +213,63 @@ css = '''
|
|
| 232 |
}
|
| 233 |
}
|
| 234 |
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
|
| 236 |
image_blocks = gr.Blocks(css=css)
|
| 237 |
with image_blocks as demo:
|
| 238 |
-
with gr.Group():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
with gr.Box(elem_id="work-container"):
|
| 240 |
with gr.Row(elem_id="input-container"):
|
| 241 |
with gr.Column():
|
| 242 |
image = gr.Image(source='upload', elem_id="image_upload",tool='sketch', type=f'{image_type}',
|
| 243 |
-
label="Upload(载入图片)", show_label=
|
| 244 |
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
|
| 245 |
with gr.Column(elem_id="erase-container"):
|
| 246 |
btn_erase = gr.Button(value = "Erase(擦除↓)",elem_id="erase_btn").style(
|
|
@@ -248,13 +277,15 @@ with image_blocks as demo:
|
|
| 248 |
rounded=(True, True, True, True),
|
| 249 |
full_width=True,
|
| 250 |
).style(width=100)
|
| 251 |
-
with gr.Column(elem_id="enhancer-checkbox"):
|
| 252 |
enhancer_label = 'Enhanced image(processing is very slow, please check only for blurred images)【增强图像(处理很慢,请仅针对模糊图像做勾选)】'
|
| 253 |
img_enhancer = gr.Checkbox(label=enhancer_label).style(width=150)
|
| 254 |
with gr.Row(elem_id="output-container"):
|
| 255 |
with gr.Column():
|
| 256 |
-
image_out = gr.Image(
|
| 257 |
|
| 258 |
btn_erase.click(fn=predict, inputs=[image, img_enhancer], outputs=[image_out])
|
| 259 |
-
|
|
|
|
|
|
|
| 260 |
image_blocks.launch()
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from PIL import Image
|
| 3 |
import numpy as np
|
| 4 |
+
import os,sys
|
| 5 |
import uuid
|
| 6 |
import torch
|
|
|
|
| 7 |
import cv2
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
import io
|
|
|
|
| 10 |
import multiprocessing
|
| 11 |
import random
|
| 12 |
import time
|
| 13 |
import imghdr
|
|
|
|
|
|
|
| 14 |
from loguru import logger
|
| 15 |
|
| 16 |
from lama_cleaner.model_manager import ModelManager
|
|
|
|
| 24 |
except:
|
| 25 |
pass
|
| 26 |
|
|
|
|
| 27 |
from lama_cleaner.helper import (
|
| 28 |
load_img,
|
| 29 |
numpy_to_bytes,
|
|
|
|
| 48 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 49 |
print(f'device = {device}')
|
| 50 |
|
| 51 |
+
def read_content(file_path: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
"""read the content of target file
|
| 53 |
"""
|
| 54 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
| 55 |
content = f.read()
|
| 56 |
return content
|
| 57 |
+
|
| 58 |
def get_image_enhancer(scale = 2, device='cuda:0'):
|
| 59 |
from basicsr.archs.rrdbnet_arch import RRDBNet
|
| 60 |
from realesrgan import RealESRGANer
|
|
|
|
| 89 |
)
|
| 90 |
return img_enhancer
|
| 91 |
|
| 92 |
+
image_enhancer = None
|
| 93 |
+
if sys.platform == 'linux':
|
| 94 |
+
image_enhancer = get_image_enhancer(scale = 1, device=device)
|
| 95 |
|
| 96 |
model = None
|
| 97 |
|
|
|
|
| 105 |
original_shape = image.shape
|
| 106 |
interpolation = cv2.INTER_CUBIC
|
| 107 |
|
| 108 |
+
size_limit = 1080
|
| 109 |
if size_limit == "Original":
|
| 110 |
size_limit = max(image.shape)
|
| 111 |
else:
|
|
|
|
| 179 |
return None
|
| 180 |
if image_type == 'filepath':
|
| 181 |
# input: {'image': '/tmp/tmp8mn9xw93.png', 'mask': '/tmp/tmpn5ars4te.png'}
|
| 182 |
+
origin_image_bytes = open(input["image"], 'rb').read()
|
| 183 |
print(f'origin_image_bytes = ', type(origin_image_bytes), len(origin_image_bytes))
|
| 184 |
image, _ = load_img(origin_image_bytes)
|
| 185 |
+
mask, _ = load_img(open(input["mask"], 'rb').read(), gray=True)
|
| 186 |
elif image_type == 'pil':
|
| 187 |
# input: {'image': pil, 'mask': pil}
|
| 188 |
image_pil = input['image']
|
|
|
|
| 192 |
output = model_process(image, mask, img_enhancer)
|
| 193 |
return output
|
| 194 |
|
| 195 |
+
|
| 196 |
css = '''
|
| 197 |
.container {max-width: 100%;margin: auto;padding-top: 1.5rem}
|
| 198 |
+
#begin-btn {color: blue; font-size:20px;}
|
| 199 |
#work-container {min-width: min(160px, 100%) !important;flex-grow: 0 !important}
|
|
|
|
|
|
|
| 200 |
#image_output{margin: 0 auto; text-align: center;width:640px}
|
| 201 |
#erase-container{margin: 0 auto; text-align: center;width:150px;border-width:5px;border-color:#2c9748}
|
| 202 |
#enhancer-checkbox{width:520px}
|
| 203 |
#enhancer-tip{width:450px}
|
| 204 |
#enhancer-tip-div{text-align: left}
|
| 205 |
#prompt-container{margin: 0 auto; text-align: center;width:fit-content;min-width: min(150px, 100%);flex-grow: 0; flex-wrap: nowrap;}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
#image_upload .touch-none{display: flex}
|
| 207 |
@keyframes spin {
|
| 208 |
from {
|
|
|
|
| 213 |
}
|
| 214 |
}
|
| 215 |
'''
|
| 216 |
+
set_page_elements = """async () => {
|
| 217 |
+
function isMobile() {
|
| 218 |
+
try {
|
| 219 |
+
document.createEvent("TouchEvent"); return true;
|
| 220 |
+
} catch(e) {
|
| 221 |
+
return false;
|
| 222 |
+
}
|
| 223 |
+
}
|
| 224 |
+
|
| 225 |
+
var gradioEl = document.querySelector('body > gradio-app').shadowRoot;
|
| 226 |
+
if (!gradioEl) {
|
| 227 |
+
gradioEl = document.querySelector('body > gradio-app');
|
| 228 |
+
}
|
| 229 |
+
var group1 = gradioEl.querySelectorAll('#group_1')[0];
|
| 230 |
+
var group2 = gradioEl.querySelectorAll('#group_2')[0];
|
| 231 |
+
var image_upload = gradioEl.querySelectorAll('#image_upload')[0];
|
| 232 |
+
var image_output = gradioEl.querySelectorAll('#image_output')[0];
|
| 233 |
+
var data_image = gradioEl.querySelectorAll('#image_upload [data-testid="image"]')[0];
|
| 234 |
+
var data_image_div = gradioEl.querySelectorAll('#image_upload [data-testid="image"] > div')[0];
|
| 235 |
+
|
| 236 |
+
if (isMobile()) {
|
| 237 |
+
var group1_width = group1.offsetWidth;
|
| 238 |
+
image_upload.setAttribute('style', 'width:' + (group1_width - 13*2) + 'px; min-height:none;');
|
| 239 |
+
data_image.setAttribute('style', 'width: ' + (group1_width - 14*2) + 'px;min-height:none;');
|
| 240 |
+
data_image_div.setAttribute('style', 'width: ' + (group1_width - 14*2) + 'px;min-height:none;');
|
| 241 |
+
image_output.setAttribute('style', 'width: ' + (group1_width - 13*2) + 'px;min-height:none;');
|
| 242 |
+
var enhancer = gradioEl.querySelectorAll('#enhancer-checkbox')[0];
|
| 243 |
+
enhancer.style.display = "none";
|
| 244 |
+
} else {
|
| 245 |
+
image_upload.setAttribute('style', 'min-height: 600px; overflow-x: overlay');
|
| 246 |
+
data_image.setAttribute('style', 'height: 600px');
|
| 247 |
+
data_image_div.setAttribute('style', 'min-height: 600px');
|
| 248 |
+
image_output.setAttribute('style', 'width: 600px');
|
| 249 |
+
}
|
| 250 |
+
group1.style.display = "none";
|
| 251 |
+
group2.style.display = "block";
|
| 252 |
+
|
| 253 |
+
}"""
|
| 254 |
|
| 255 |
image_blocks = gr.Blocks(css=css)
|
| 256 |
with image_blocks as demo:
|
| 257 |
+
with gr.Group(elem_id="group_1", visible=True) as group_1:
|
| 258 |
+
with gr.Box():
|
| 259 |
+
with gr.Row():
|
| 260 |
+
with gr.Column():
|
| 261 |
+
gallery = gr.Gallery(value=['./sample_00.jpg','./sample_00_e.jpg'], show_label=False)
|
| 262 |
+
gallery.style(grid=[2], width=320)
|
| 263 |
+
with gr.Row():
|
| 264 |
+
with gr.Column():
|
| 265 |
+
begin_button = gr.Button("Let's GO!", elem_id="begin-btn", visible=True)
|
| 266 |
+
|
| 267 |
+
with gr.Group(elem_id="group_2", visible=False) as group_2:
|
| 268 |
with gr.Box(elem_id="work-container"):
|
| 269 |
with gr.Row(elem_id="input-container"):
|
| 270 |
with gr.Column():
|
| 271 |
image = gr.Image(source='upload', elem_id="image_upload",tool='sketch', type=f'{image_type}',
|
| 272 |
+
label="Upload(载入图片)", show_label=False).style(mobile_collapse=False)
|
| 273 |
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
|
| 274 |
with gr.Column(elem_id="erase-container"):
|
| 275 |
btn_erase = gr.Button(value = "Erase(擦除↓)",elem_id="erase_btn").style(
|
|
|
|
| 277 |
rounded=(True, True, True, True),
|
| 278 |
full_width=True,
|
| 279 |
).style(width=100)
|
| 280 |
+
with gr.Column(elem_id="enhancer-checkbox", visible=True if image_enhancer is not None else False):
|
| 281 |
enhancer_label = 'Enhanced image(processing is very slow, please check only for blurred images)【增强图像(处理很慢,请仅针对模糊图像做勾选)】'
|
| 282 |
img_enhancer = gr.Checkbox(label=enhancer_label).style(width=150)
|
| 283 |
with gr.Row(elem_id="output-container"):
|
| 284 |
with gr.Column():
|
| 285 |
+
image_out = gr.Image(elem_id="image_output",label="Result", show_label=False)
|
| 286 |
|
| 287 |
btn_erase.click(fn=predict, inputs=[image, img_enhancer], outputs=[image_out])
|
| 288 |
+
|
| 289 |
+
begin_button.click(fn=None, inputs=[], outputs=[group_1, group_2], _js=set_page_elements)
|
| 290 |
+
|
| 291 |
image_blocks.launch()
|