Spaces:
Running
Running
Commit
·
2e0fb71
1
Parent(s):
197179b
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,20 +7,10 @@ import uuid
|
|
| 7 |
import torch
|
| 8 |
from torch import autocast
|
| 9 |
import cv2
|
| 10 |
-
|
| 11 |
from io import BytesIO
|
| 12 |
-
|
| 13 |
-
import PIL
|
| 14 |
-
from PIL import Image
|
| 15 |
-
import numpy as np
|
| 16 |
-
import os
|
| 17 |
-
import uuid
|
| 18 |
-
import torch
|
| 19 |
-
from torch import autocast
|
| 20 |
-
import cv2
|
| 21 |
from matplotlib import pyplot as plt
|
| 22 |
from torchvision import transforms
|
| 23 |
-
from diffusers import DiffusionPipeline
|
| 24 |
|
| 25 |
import io
|
| 26 |
import logging
|
|
@@ -85,18 +75,17 @@ def read_content(file_path):
|
|
| 85 |
|
| 86 |
model = None
|
| 87 |
|
| 88 |
-
def model_process(image, mask
|
| 89 |
global model
|
|
|
|
| 90 |
original_shape = image.shape
|
| 91 |
interpolation = cv2.INTER_CUBIC
|
| 92 |
|
| 93 |
size_limit = "Original"
|
| 94 |
-
print(f'size_limit_2_ = {size_limit}')
|
| 95 |
if size_limit == "Original":
|
| 96 |
size_limit = max(image.shape)
|
| 97 |
else:
|
| 98 |
size_limit = int(size_limit)
|
| 99 |
-
print(f'size_limit_3_ = {size_limit}')
|
| 100 |
|
| 101 |
config = Config(
|
| 102 |
ldm_steps=25,
|
|
@@ -122,108 +111,42 @@ def model_process(image, mask, alpha_channel, ext):
|
|
| 122 |
cv2_radius=5,
|
| 123 |
)
|
| 124 |
|
| 125 |
-
print(f'config/alpha_channel/size_limit = {config} / {alpha_channel} / {size_limit}')
|
| 126 |
if config.sd_seed == -1:
|
| 127 |
config.sd_seed = random.randint(1, 999999999)
|
| 128 |
|
| 129 |
-
logger.info(f"Origin image shape: {original_shape}")
|
| 130 |
-
print(f"Origin image shape: {original_shape} / {image[250][250]}")
|
| 131 |
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
|
| 132 |
-
logger.info(f"Resized image shape: {image.shape} / {type(image)}")
|
| 133 |
-
print(f"Resized image shape: {image.shape} / {image[250][250]}")
|
| 134 |
-
|
| 135 |
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
|
| 136 |
-
print(f"mask image shape: {mask.shape} / {type(mask)} / {mask[250][250]} / {alpha_channel}")
|
| 137 |
|
| 138 |
if model is None:
|
| 139 |
return None
|
| 140 |
|
| 141 |
-
start = time.time()
|
| 142 |
res_np_img = model(image, mask, config)
|
| 143 |
-
logger.info(f"process time: {(time.time() - start) * 1000}ms, {res_np_img.shape}")
|
| 144 |
-
print(f"process time_1_: {(time.time() - start) * 1000}ms, {res_np_img.shape} / {res_np_img[250][250]} / {res_np_img.dtype}")
|
| 145 |
-
|
| 146 |
torch.cuda.empty_cache()
|
| 147 |
-
|
| 148 |
-
alpha_channel = None
|
| 149 |
-
if alpha_channel is not None:
|
| 150 |
-
print(f"liuyz_here_10_: {alpha_channel.shape} / {res_np_img.dtype}")
|
| 151 |
-
if alpha_channel.shape[:2] != res_np_img.shape[:2]:
|
| 152 |
-
print(f"liuyz_here_20_: {res_np_img.shape}")
|
| 153 |
-
alpha_channel = cv2.resize(
|
| 154 |
-
alpha_channel, dsize=(res_np_img.shape[1], res_np_img.shape[0])
|
| 155 |
-
)
|
| 156 |
-
print(f"liuyz_here_30_: {res_np_img.dtype}")
|
| 157 |
-
res_np_img = np.concatenate(
|
| 158 |
-
(res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
|
| 159 |
-
)
|
| 160 |
-
print(f"liuyz_here_40_: {res_np_img.dtype}")
|
| 161 |
-
|
| 162 |
-
print(f"process time_2_: {(time.time() - start) * 1000}ms, {res_np_img.shape} / {res_np_img[250][250]} / {res_np_img.dtype} /{ext}")
|
| 163 |
|
| 164 |
-
image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img,
|
| 165 |
return image # image
|
| 166 |
|
| 167 |
model = ModelManager(
|
| 168 |
name='lama',
|
| 169 |
device=device,
|
| 170 |
-
# hf_access_token=HF_TOKEN_SD,
|
| 171 |
-
# sd_disable_nsfw=False,
|
| 172 |
-
# sd_cpu_textencoder=True,
|
| 173 |
-
# sd_run_local=True,
|
| 174 |
-
# callback=diffuser_callback,
|
| 175 |
)
|
| 176 |
|
| 177 |
-
'''
|
| 178 |
-
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", dtype=torch.float16, revision="fp16", use_auth_token=auth_token).to(device)
|
| 179 |
-
|
| 180 |
-
transform = transforms.Compose([
|
| 181 |
-
transforms.ToTensor(),
|
| 182 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 183 |
-
transforms.Resize((512, 512)),
|
| 184 |
-
])
|
| 185 |
-
'''
|
| 186 |
-
|
| 187 |
-
|
| 188 |
image_type = 'filepath' #'pil'
|
| 189 |
def predict(input):
|
| 190 |
-
print(f'liuyz_0_', input)
|
| 191 |
-
'''
|
| 192 |
-
image_np = np.array(input["image"])
|
| 193 |
-
print(f'image_np = {image_np.shape}')
|
| 194 |
-
mask_np = np.array(input["mask"])
|
| 195 |
-
print(f'mask_np = {mask_np.shape}')
|
| 196 |
-
'''
|
| 197 |
-
'''
|
| 198 |
-
image = dict["image"] # .convert("RGB") #.resize((512, 512))
|
| 199 |
-
# target_size = (init_image.shape[0], init_image.shape[1])
|
| 200 |
-
print(f'liuyz_1_', image.shape)
|
| 201 |
-
print(f'liuyz_2_', image.convert("RGB").shape)
|
| 202 |
-
print(f'liuyz_3_', image.convert("RGB").resize((512, 512)).shape)
|
| 203 |
-
# mask = dict["mask"] # .convert("RGB") #.resize((512, 512))
|
| 204 |
-
'''
|
| 205 |
if image_type == 'filepath':
|
| 206 |
# input: {'image': '/tmp/tmp8mn9xw93.png', 'mask': '/tmp/tmpn5ars4te.png'}
|
| 207 |
origin_image_bytes = read_content(input["image"])
|
| 208 |
print(f'origin_image_bytes = ', type(origin_image_bytes), len(origin_image_bytes))
|
| 209 |
image, _ = load_img(origin_image_bytes)
|
| 210 |
mask, _ = load_img(read_content(input["mask"]), gray=True)
|
| 211 |
-
alpha_channel = (np.ones((image.shape[0],image.shape[1]))*255).astype(np.uint8)
|
| 212 |
-
ext = get_image_ext(origin_image_bytes)
|
| 213 |
-
|
| 214 |
-
output = model_process(image, mask, alpha_channel, ext)
|
| 215 |
elif image_type == 'pil':
|
| 216 |
# input: {'image': pil, 'mask': pil}
|
| 217 |
image_pil = input['image']
|
| 218 |
mask_pil = input['mask']
|
| 219 |
-
|
| 220 |
image = np.array(image_pil)
|
| 221 |
mask = np.array(mask_pil.convert("L"))
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
output = model_process(image, mask, alpha_channel, ext)
|
| 226 |
-
return output #, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
| 227 |
|
| 228 |
css = '''
|
| 229 |
.container {max-width: 1150px;margin: auto;padding-top: 1.5rem}
|
|
@@ -264,58 +187,14 @@ css = '''
|
|
| 264 |
}
|
| 265 |
'''
|
| 266 |
|
| 267 |
-
'''
|
| 268 |
-
sketchpad = Sketchpad()
|
| 269 |
-
imageupload = ImageUplaod()
|
| 270 |
-
interface = gr.Interface(fn=predict, inputs="image", outputs="image", sketchpad, imageupload)
|
| 271 |
-
|
| 272 |
-
interface.launch(share=True)
|
| 273 |
-
'''
|
| 274 |
-
|
| 275 |
-
'''
|
| 276 |
-
# gr.Interface(fn=predict, inputs="image", outputs="image").launch(share=True)
|
| 277 |
-
|
| 278 |
-
image = gr.Image(source='upload', tool='sketch', type="pil", label="Upload")# .style(height=400)
|
| 279 |
-
image_blocks = gr.Interface(
|
| 280 |
-
fn=predict,
|
| 281 |
-
inputs=image,
|
| 282 |
-
outputs=image,
|
| 283 |
-
# examples=[["cheetah.jpg"]],
|
| 284 |
-
)
|
| 285 |
-
|
| 286 |
-
image_blocks.launch(inline=True)
|
| 287 |
-
|
| 288 |
-
import gradio as gr
|
| 289 |
-
|
| 290 |
-
def greet(dict, name, is_morning, temperature):
|
| 291 |
-
image = dict['image']
|
| 292 |
-
target_size = (image.shape[0], image.shape[1])
|
| 293 |
-
print(f'liuyz_1_', target_size)
|
| 294 |
-
salutation = "Good morning" if is_morning else "Good evening"
|
| 295 |
-
greeting = f"{salutation} {name}. It is {temperature} degrees today"
|
| 296 |
-
celsius = (temperature - 32) * 5 / 9
|
| 297 |
-
return image, greeting, round(celsius, 2)
|
| 298 |
-
|
| 299 |
-
image = gr.Image(source='upload', tool='sketch', label="上传")# .style(height=400)
|
| 300 |
-
|
| 301 |
-
demo = gr.Interface(
|
| 302 |
-
fn=greet,
|
| 303 |
-
inputs=[image, "text", "checkbox", gr.Slider(0, 100)],
|
| 304 |
-
outputs=['image', "text", "number"],
|
| 305 |
-
)
|
| 306 |
-
demo.launch()
|
| 307 |
-
'''
|
| 308 |
-
|
| 309 |
image_blocks = gr.Blocks(css=css)
|
| 310 |
with image_blocks as demo:
|
| 311 |
-
# gr.HTML(read_content("header.html"))
|
| 312 |
with gr.Group():
|
| 313 |
with gr.Box():
|
| 314 |
with gr.Row():
|
| 315 |
with gr.Column():
|
| 316 |
image = gr.Image(source='upload', elem_id="image_upload", tool='editor', type=f'{image_type}', label="Upload").style(height=512)
|
| 317 |
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
|
| 318 |
-
# prompt = gr.Textbox(placeholder = 'Your prompt (what you want in place of what is erased)', show_label=False, elem_id="input-text")
|
| 319 |
btn_in = gr.Button("Done!").style(
|
| 320 |
margin=True,
|
| 321 |
rounded=(True, True, True, True),
|
|
@@ -324,18 +203,6 @@ with image_blocks as demo:
|
|
| 324 |
|
| 325 |
with gr.Column():
|
| 326 |
image_out = gr.Image(label="Output", elem_id="image_output", visible=True).style(height=512)
|
| 327 |
-
|
| 328 |
-
with gr.Group(elem_id="share-btn-container"):
|
| 329 |
-
community_icon = gr.HTML(community_icon_html, visible=False)
|
| 330 |
-
loading_icon = gr.HTML(loading_icon_html, visible=False)
|
| 331 |
-
share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
|
| 332 |
-
'''
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
# btn.click(fn=predict, inputs=[image, prompt], outputs=[image_out, community_icon, loading_icon, share_button])
|
| 337 |
-
btn_in.click(fn=predict, inputs=[image], outputs=[image_out]) #, community_icon, loading_icon, share_button])
|
| 338 |
-
#share_button.click(None, [], [], _js=share_js)
|
| 339 |
-
|
| 340 |
|
| 341 |
image_blocks.launch()
|
|
|
|
| 7 |
import torch
|
| 8 |
from torch import autocast
|
| 9 |
import cv2
|
|
|
|
| 10 |
from io import BytesIO
|
| 11 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
from matplotlib import pyplot as plt
|
| 13 |
from torchvision import transforms
|
|
|
|
| 14 |
|
| 15 |
import io
|
| 16 |
import logging
|
|
|
|
| 75 |
|
| 76 |
model = None
|
| 77 |
|
| 78 |
+
def model_process(image, mask):
|
| 79 |
global model
|
| 80 |
+
|
| 81 |
original_shape = image.shape
|
| 82 |
interpolation = cv2.INTER_CUBIC
|
| 83 |
|
| 84 |
size_limit = "Original"
|
|
|
|
| 85 |
if size_limit == "Original":
|
| 86 |
size_limit = max(image.shape)
|
| 87 |
else:
|
| 88 |
size_limit = int(size_limit)
|
|
|
|
| 89 |
|
| 90 |
config = Config(
|
| 91 |
ldm_steps=25,
|
|
|
|
| 111 |
cv2_radius=5,
|
| 112 |
)
|
| 113 |
|
|
|
|
| 114 |
if config.sd_seed == -1:
|
| 115 |
config.sd_seed = random.randint(1, 999999999)
|
| 116 |
|
|
|
|
|
|
|
| 117 |
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
|
|
|
|
|
|
|
|
|
|
| 118 |
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
|
|
|
|
| 119 |
|
| 120 |
if model is None:
|
| 121 |
return None
|
| 122 |
|
|
|
|
| 123 |
res_np_img = model(image, mask, config)
|
|
|
|
|
|
|
|
|
|
| 124 |
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
+
image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, 'png')))
|
| 127 |
return image # image
|
| 128 |
|
| 129 |
model = ModelManager(
|
| 130 |
name='lama',
|
| 131 |
device=device,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
)
|
| 133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
image_type = 'filepath' #'pil'
|
| 135 |
def predict(input):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
if image_type == 'filepath':
|
| 137 |
# input: {'image': '/tmp/tmp8mn9xw93.png', 'mask': '/tmp/tmpn5ars4te.png'}
|
| 138 |
origin_image_bytes = read_content(input["image"])
|
| 139 |
print(f'origin_image_bytes = ', type(origin_image_bytes), len(origin_image_bytes))
|
| 140 |
image, _ = load_img(origin_image_bytes)
|
| 141 |
mask, _ = load_img(read_content(input["mask"]), gray=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
elif image_type == 'pil':
|
| 143 |
# input: {'image': pil, 'mask': pil}
|
| 144 |
image_pil = input['image']
|
| 145 |
mask_pil = input['mask']
|
|
|
|
| 146 |
image = np.array(image_pil)
|
| 147 |
mask = np.array(mask_pil.convert("L"))
|
| 148 |
+
output = model_process(image, mask)
|
| 149 |
+
return output
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
css = '''
|
| 152 |
.container {max-width: 1150px;margin: auto;padding-top: 1.5rem}
|
|
|
|
| 187 |
}
|
| 188 |
'''
|
| 189 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
image_blocks = gr.Blocks(css=css)
|
| 191 |
with image_blocks as demo:
|
|
|
|
| 192 |
with gr.Group():
|
| 193 |
with gr.Box():
|
| 194 |
with gr.Row():
|
| 195 |
with gr.Column():
|
| 196 |
image = gr.Image(source='upload', elem_id="image_upload", tool='editor', type=f'{image_type}', label="Upload").style(height=512)
|
| 197 |
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
|
|
|
|
| 198 |
btn_in = gr.Button("Done!").style(
|
| 199 |
margin=True,
|
| 200 |
rounded=(True, True, True, True),
|
|
|
|
| 203 |
|
| 204 |
with gr.Column():
|
| 205 |
image_out = gr.Image(label="Output", elem_id="image_output", visible=True).style(height=512)
|
| 206 |
+
btn_in.click(fn=predict, inputs=[image], outputs=[image_out])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
image_blocks.launch()
|