import io import os import ffmpeg import copy import uuid import requests from PIL import Image from io import BytesIO import spaces import gradio as gr import torch import numpy as np import random import soundfile as sf import librosa import whisper import opencc import torchaudio from torchaudio.transforms import Resample import modelscope_studio.components.base as ms import modelscope_studio.components.antd as antd import gradio.processing_utils as processing_utils from gradio_client import utils as client_utils from argparse import ArgumentParser from mgm.conversation import conv_templates from mgm.model import * from mgm.model.builder import load_pretrained_model from mgm.mm_utils import tokenizer_image_speech_token, tokenizer_speech_token from mgm.constants import DEFAULT_IMAGE_TOKEN, DEFAULT_SPEECH_TOKEN, AUDIO_START, AUDIO_END, AUDIO_SEP from mgm.model.multimodal_generator.mgm_omni_streamer import MGMOmniStreamer from mgm.serve.utils import preprocess_image_qwen2vl, process_visual_input, process_audio_input from transformers import TextStreamer, TextIteratorStreamer, AutoModelForSpeechSeq2Seq, pipeline from threading import Thread def _load_model_processor(args): device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer, tokenizer_speech, model, image_processor, audio_processor = \ load_pretrained_model( args.model, args.load_8bit, args.load_4bit, speechlm_path=args.speechlm, use_flash_attn=True, device=device ) asr_pipe = pipeline( model="openai/whisper-large-v3", chunk_length_s=30, stride_length_s=[4, 2], torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, device=device, ) return tokenizer, tokenizer_speech, model, image_processor, audio_processor, asr_pipe @spaces.GPU() def whispers_asr(asr_pipe, ref_speech_file): audio_text = asr_pipe(ref_speech_file)['text'] has_chinese = any('\u4e00' <= char <= '\u9fff' for char in audio_text) if audio_text[0] == ' ': audio_text = audio_text[1:] if has_chinese: if audio_text[-1] not in ['。', '!', '?']: audio_text += '。' audio_text = opencc.OpenCC('t2s').convert(audio_text) else: if audio_text[-1] not in ['.', '!', '?']: audio_text += '.' if audio_text[0].islower(): audio_text = audio_text[0].upper() + audio_text[1:] return audio_text def _launch_demo(args, tokenizer, tokenizer_speech, model, image_processor, audio_processor, asr_pipe): # Voice settings default_system_prompt = 'You are MGM Omni, a virtual human developed by the Von Neumann Institute, capable of perceiving auditory and visual inputs, as well as generating text and speech.' pre_prompt_cn = '使用参考音频中听到的语气回答。' pre_prompt_en = 'Respond with the tone of the reference audio clip.' ref_chinese = [ ('assets/ref_audio/Man_ZH.wav', '他疯狂寻找到能够让自己升级的办法终于有所收获,那就是炼体。'), ('assets/ref_audio/Woman_ZH.wav', '语音合成技术其实早已悄悄地走进了我们的生活。从智能语音助手到有声读物再到个性化语音复刻,这项技术正在改变我们获取信息,与世界互动的方式,而且他的进步速度远超我们的想象。') ] ref_english = [ ('assets/ref_audio/Man_EN.wav', '\"Incredible!\" Dr. Chen exclaimed, unable to contain her enthusiasm. \"The quantum fluctuations we have observed in these superconducting materials exhibit completely unexpected characteristics.\"'), ('assets/ref_audio/Woman_EN.wav', 'The device would work during the day as well, if you took steps to either block direct sunlight or point it away from the sun.') ] previous_turn_is_tts = False language = args.ui_language def get_text(text: str, cn_text: str): if language == 'en': return text if language == 'zh': return cn_text return text def format_history(history: list, system_prompt: str): messages = [] messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]}) for item in history: if isinstance(item["content"], str): messages.append({"role": item['role'], "content": item['content']}) elif item["role"] == "user" and (isinstance(item["content"], list) or isinstance(item["content"], tuple)): file_path = item["content"][0] mime_type = client_utils.get_mimetype(file_path) if mime_type.startswith("image"): messages.append({ "role": item['role'], "content": [{ "type": "image", "image": file_path }] }) elif mime_type.startswith("video"): messages.append({ "role": item['role'], "content": [{ "type": "video", "video": file_path }] }) elif mime_type.startswith("audio"): if len(item["content"]) == 1: messages.append({ "role": item['role'], "content": [{ "type": "audio", "audio": file_path, }] }) elif len(item["content"]) == 2: messages.append({ "role": item['role'], "content": [{ "type": "refer_speech", "refer_speech": file_path, "ref_speech_text": item["content"][1], }] }) else: raise ValueError(f"Invalid content length: {len(item['content'])}") return messages def process_messages(messages, conv): inp = '' image_files = [] audio_files = [] ref_speech_file = None ref_speech_text = None user_inp = '' last_text_inp = '' for message in messages: if message['role'] == 'system': conv.system = '<|im_start|>system\n' + message['content'][0]['text'] elif message['role'] == 'user': if isinstance(message['content'], str): user_inp += message['content'] last_text_inp = message['content'] conv.append_message(conv.roles[0], user_inp) user_inp = '' else: for item in message['content']: if item['type'] == 'image': image_files.append((item['image'], None)) user_inp += '<|vision_start|>' + DEFAULT_IMAGE_TOKEN + '<|vision_end|>' + "\n" if item['type'] == 'video': image_files.append((None, item['video'])) user_inp += '<|vision_start|>' + DEFAULT_IMAGE_TOKEN + '<|vision_end|>' + "\n" elif item['type'] == 'audio': audio_files.append(item['audio']) user_inp += DEFAULT_SPEECH_TOKEN elif item['type'] == 'refer_speech': ref_speech_file = item['refer_speech'] ref_speech_text = item['ref_speech_text'] elif message['role'] == 'assistant': if user_inp != '': conv.append_message(conv.roles[0], user_inp) user_inp = '' conv.append_message(conv.roles[1], message['content']) if user_inp != '': conv.append_message(conv.roles[0], user_inp) user_inp = '' conv.append_message(conv.roles[1], None) if ref_speech_file is None: has_chinese = any('\u4e00' <= char <= '\u9fff' for char in last_text_inp) if has_chinese: ref_item = random.choice(ref_chinese) else: ref_item = random.choice(ref_english) ref_speech_file, ref_speech_text = ref_item return conv, image_files, audio_files, ref_speech_file, ref_speech_text @spaces.GPU() def predict(messages): conv = conv_templates['qwen2vl'].copy() conv_speech = conv_templates['qwen2vl'].copy() conv, image_files, audio_files, ref_speech_file, ref_speech_text = process_messages(messages, conv) # prepare image & speech file image_aspect_ratio = getattr(model.config, 'image_aspect_ratio', 'qwen2vl') image_tensor = [process_visual_input(image_file[0], image_file[1], image_processor, image_aspect_ratio) for image_file in image_files] speech_tensor = [process_audio_input(audio_file, audio_processor) for audio_file in audio_files] if len(image_tensor) > 0: if isinstance(image_tensor[0], dict): for image in image_tensor: for key in image.keys(): image[key] = image[key].to(dtype=model.dtype, device=model.device, non_blocking=True) else: image_tensor = [image.to(dtype=model.dtype, device=model.device, non_blocking=True) for image in image_tensor] else: image_tensor = None if len(speech_tensor) > 0: speech_tensor = [speech.to(dtype=model.dtype, device=model.device, non_blocking=True) for speech in speech_tensor] else: speech_tensor = None # process refer speech audio_refer, _ = librosa.load(ref_speech_file, sr=16000) audio_refer = torch.tensor(audio_refer).unsqueeze(0).to(model.device) text_refer = ref_speech_text input_ids_refer = tokenizer_speech(text_refer)['input_ids'] input_ids_refer = torch.tensor(input_ids_refer).unsqueeze(0).to(model.device) prompt = conv.get_prompt() if image_tensor is not None: input_ids = tokenizer_image_speech_token(prompt, tokenizer, return_tensors='pt').unsqueeze(0).to(model.device) else: input_ids = tokenizer_speech_token(prompt, tokenizer, return_tensors='pt').unsqueeze(0).to(model.device) print("************MLM prompt: ", prompt) # prompt for base model has_chinese = any('\u4e00' <= char <= '\u9fff' for char in text_refer) pre_prompt_speech = (pre_prompt_cn if has_chinese else pre_prompt_en) inp_speech = pre_prompt_speech + AUDIO_START + DEFAULT_SPEECH_TOKEN + AUDIO_END + "\n" # + inp_speech conv_speech.append_message(conv_speech.roles[0], inp_speech) conv_speech.append_message(conv_speech.roles[1], AUDIO_START) prompt_speech = conv_speech.get_prompt().replace('<|im_end|>\n', '') input_ids_speech = tokenizer_speech_token(prompt_speech, tokenizer_speech, return_tensors='pt').unsqueeze(0).to(model.device) print("************SLM prompt: ", prompt_speech) # prompt for speech generator streamer = MGMOmniStreamer( tokenizer, cosyvoice=model.speechlm.cosyvoice.model, max_audio_token=model.config.speechlm.tokenizer_speech_size, skip_prompt=True, skip_special_tokens=True, timeout=15 ) thread = Thread( target=model.generate, kwargs=dict( inputs=input_ids, inputs_speech=input_ids_speech, images=image_tensor, speeches=speech_tensor, input_ids_refer=input_ids_refer, audio_refer=audio_refer, streamer=streamer, do_sample=True, temperature=0.4, max_new_tokens=4096, bos_token_id=tokenizer.pad_token_id, eos_token_id=[tokenizer.eos_token_id], pad_token_id=tokenizer.pad_token_id, tokenizer=tokenizer, assistant_tokenizer=tokenizer_speech, use_cache=True ), ) thread.start() response = '' audio = [] stop_str = '<|im_end|>' for item in streamer: item_type, content = item if item_type == 'text': response += content if response.endswith(stop_str): response = response[: -len(stop_str)] yield {"type": "text", "data": response} else: yield {"type": "audio", "data": content} thread.join() @spaces.GPU() def chat_predict(text, refer_speech, audio, talk_inp, image, video, history, system_prompt, autoplay): # Clean TTS history global previous_turn_is_tts try: if previous_turn_is_tts: history = [] previous_turn_is_tts = False except: previous_turn_is_tts = False # Process text input if text: history.append({"role": "user", "content": text}) else: text = '' # Process refer_speech input if refer_speech: refer_speech_text = whispers_asr(asr_pipe, refer_speech) history.append({"role": "user", "content": (refer_speech, refer_speech_text)}) # Process talk input if talk_inp: history.append({"role": "user", "content": (talk_inp, )}) # assign refer_speech has_refer_speech = False for item in history: if isinstance(item['content'], tuple): has_refer_speech |= (len(item['content']) == 2) if has_refer_speech == False: has_chinese = any('\u4e00' <= char <= '\u9fff' for char in text) if has_chinese: ref_item = random.choice(ref_chinese) else: ref_item = random.choice(ref_english) refer_speech, refer_speech_text = ref_item history.append({"role": "user", "content": (refer_speech, refer_speech_text)}) formatted_history = format_history(history=history, system_prompt=system_prompt) yield None, None, None, None, None, None, None, history history.append({"role": "assistant", "content": ""}) sample_rate = 24000 audio = [] for chunk in predict(formatted_history): if chunk["type"] == "text": history[-1]["content"] = chunk["data"] yield gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip( ), None, history elif chunk["type"] == "audio": audio.append(chunk["data"]) audio_output = (sample_rate, chunk["data"]) if autoplay else None yield gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), audio_output, history audio = np.concatenate(audio) history.append({"role": "assistant", "content": gr.Audio((sample_rate, audio))}) yield gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), None, history @spaces.GPU() def tts_run(messages): sample_rate = 24000 target_text = messages[1]['content'] if len(messages) < 3: has_chinese = any('\u4e00' <= char <= '\u9fff' for char in target_text) if has_chinese: ref_item = random.choice(ref_chinese) else: ref_item = random.choice(ref_english) ref_speech_file, ref_speech_text = ref_item else: ref_speech_file = messages[2]['content'][0]['refer_speech'] ref_speech_text = messages[2]['content'][0]['ref_speech_text'] # process refer audio audio_refer, _ = librosa.load(ref_speech_file, sr=16000) audio_refer = torch.tensor(audio_refer).unsqueeze(0).to(model.device) text_refer = ref_speech_text input_ids_refer = tokenizer_speech(text_refer)['input_ids'] input_ids_refer = torch.tensor(input_ids_refer).unsqueeze(0).to(model.device) conv = conv_templates['qwen2vl'].copy() has_chinese = any('\u4e00' <= char <= '\u9fff' for char in text_refer) pre_prompt = (pre_prompt_cn if has_chinese else pre_prompt_en) inp = pre_prompt + AUDIO_START + DEFAULT_SPEECH_TOKEN + AUDIO_END + "\n" oup = AUDIO_START + target_text conv.append_message(conv.roles[0], inp) conv.append_message(conv.roles[1], oup) prompt = conv.get_prompt() input_ids = tokenizer_speech_token(prompt, tokenizer_speech, return_tensors='pt').unsqueeze(0).to(model.device) print("************SLM prompt: ", prompt) # prompt for SpeechLM streamer = MGMOmniStreamer( tokenizer_speech, cosyvoice=model.speechlm.cosyvoice.model, max_audio_token=model.config.speechlm.tokenizer_speech_size, skip_prompt=True, skip_special_tokens=True, timeout=15 ) thread = Thread( target=model.speechlm.generate, kwargs=dict( inputs=input_ids, input_ids_refer=input_ids_refer, audio_refer=audio_refer, streamer=streamer, do_sample=True, temperature=0.5, max_new_tokens=4096, bos_token_id=tokenizer_speech.pad_token_id, eos_token_id=[tokenizer_speech.eos_token_id], pad_token_id=tokenizer_speech.pad_token_id, tokenizer=tokenizer_speech, use_cache=True ), ) thread.start() response = '' audio = [] stop_str = '<|im_end|>' for item in streamer: item_type, content = item if item_type == 'text': response += content if response.endswith(stop_str): response = response[: -len(stop_str)] yield {"type": "text", "data": response} else: yield {"type": "audio", "data": content} thread.join() @spaces.GPU() def tts_predict(text, refer_speech, audio_input, talk_input, image_input, video_input, history, system_prompt, autoplay): # Process refer_speech input if refer_speech: refer_speech_text = whispers_asr(asr_pipe, refer_speech) else: refer_speech = None refer_speech_text = None for item in history: if item["role"] == "user" and len(item["content"]) == 2: refer_speech = item["content"][0] refer_speech_text = item["content"][1] history = [] global previous_turn_is_tts previous_turn_is_tts = True # Process text input if text: history.append({"role": "user", "content": text}) else: history.append({"role": "assistant", "content": "Don't forget to input text for text to speech synthesis."}) yield gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), None, history return if refer_speech is not None: history.append({"role": "user", "content": (refer_speech, refer_speech_text)}) formatted_history = format_history(history=history, system_prompt=system_prompt) yield None, None, None, None, None, None, None, history history.append({"role": "assistant", "content": ""}) sample_rate = 24000 audio = [] for chunk in tts_run(formatted_history): if chunk["type"] == "text": history[-1]["content"] = chunk["data"] yield gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip( ), None, history elif chunk["type"] == "audio": audio.append(chunk["data"]) audio_output = (sample_rate, chunk["data"]) if autoplay else None yield gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), audio_output, history audio = np.concatenate(audio) history.append({"role": "assistant", "content": gr.Audio((sample_rate, audio))}) yield gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), None, history with gr.Blocks(title="MGM-Omni", theme=gr.themes.Soft()) as demo: # Using a clean theme similar to ChatGPT with gr.Sidebar(open=False): system_prompt_textbox = gr.Textbox(label="System Prompt", value=default_system_prompt) gr.HTML( """ """ ) gr.Markdown("# MGM-Omni: Scaling Omni LLMs to Personalized Long-Horizon Speech") gr.Markdown("### [Paper](https://arxiv.org/abs/2509.25131) [Github](https://github.com/dvlab-research/MGM-Omni) [Models](https://huggingface.co/collections/wcy1122/mgm-omni-6896075e97317a88825032e1) [Benchmark](https://huggingface.co/datasets/wcy1122/Long-TTS-Eval)") gr.Markdown("If you like our demo, a like ❤️ and a star 🌟 would be appreciated!") # Hidden components for handling uploads and outputs audio_input = gr.Audio(visible=True, type="filepath", elem_classes="container-display" ) image_input = gr.Image(visible=True, type="filepath", elem_classes="container-display" ) video_input = gr.Video(visible=True, elem_classes="container-display" ) audio_output = gr.Audio( label="Generated Audio", autoplay=True, streaming=True, visible=True, elem_classes="container-display" ) placeholder = placeholder = """ **Welcome to MGM-Omni!** 🎉 Start chatting or generate voice responses with these options: - 🎙️ **Reference Voice**: Choose, upload or record an audio clip for voice clone. - 📤 **Upload**: Upload video, image, or audio files. - ✍️ **Input Mode**: - **Text**: Type your message to chat. - **Talk**: Record or upload audio to chat. - 🚀 **Generate Mode**: - **Chat**: Engage in a conversation with MGM-Omni. - **TTS**: Text to speech generation with reference voice. **Get started by typing or uploading below!** 😊 """ with gr.Row(equal_height=True): with gr.Column(scale=7, min_width="70%"): # Chatbot as the main component chatbot = gr.Chatbot( type="messages", height=600, placeholder=placeholder, show_label=False ) with gr.Column(scale=3): refer_speech = gr.Audio(sources=["microphone", "upload"], type="filepath", label="Upload Reference Voice", elem_classes="media-upload", value=None, scale=0 ) # Restore reference speech gallery in sidebar for better layout gr.Markdown("### Voice Clone Examples") refer_items = [ ("assets/ref_img/Man_ZH.jpg", "assets/ref_audio/Man_ZH.wav", "Man-ZH"), ("assets/ref_img/Man_EN.jpg", "assets/ref_audio/Man_EN.wav", "Man-EN"), ("assets/ref_img/Woman_ZH.jpg", "assets/ref_audio/Woman_ZH.wav", "Woman-ZH"), ("assets/ref_img/Woman_EN.jpg", "assets/ref_audio/Woman_EN.wav", "Woman-EN"), ("assets/ref_img/Old_Woman_ZH.jpg", "assets/ref_audio/Old_Woman_ZH.wav", "Old-Woman-ZH"), ("assets/ref_img/Musk.jpg", "assets/ref_audio/Musk.wav", "Elon Musk"), ("assets/ref_img/Trump.jpg", "assets/ref_audio/Trump.wav", "Donald Trump"), ("assets/ref_img/Jensen.jpg", "assets/ref_audio/Jensen.wav", "Jensen Huang"), ("assets/ref_img/Lebron.jpg", "assets/ref_audio/Lebron.wav", "LeBron James"), ("assets/ref_img/jay.jpg", "assets/ref_audio/Jay.wav", "Jay Chou(周杰伦)"), ("assets/ref_img/GEM.jpg", "assets/ref_audio/GEM.wav", "G.E.M.(邓紫棋)"), ("assets/ref_img/Zhiling.jpg", "assets/ref_audio/Zhiling.wav", "Lin Chi-Ling(林志玲)"), ("assets/ref_img/mabaoguo.jpg", "assets/ref_audio/mabaoguo.wav", "Ma Baoguo(马保国)"), ("assets/ref_img/Taiyi.jpg", "assets/ref_audio/Taiyi.wav", "Taiyi(太乙真人)"), ("assets/ref_img/StarRail_Firefly.jpg", "assets/ref_audio/StarRail_Firefly.wav", "崩铁-流萤"), ("assets/ref_img/genshin_Kokomi.jpg", "assets/ref_audio/genshin_Kokomi.wav", "原神-珊瑚宫心海"), ("assets/ref_img/genshin_Raiden.jpg", "assets/ref_audio/genshin_Raiden.wav", "原神-雷电将军"), ("assets/ref_img/genshin_ZhongLi.jpg", "assets/ref_audio/genshin_ZhongLi.wav", "原神-钟离"), ("assets/ref_img/genshin_Hutao.jpg", "assets/ref_audio/genshin_Hutao.wav", "原神-胡桃"), ("assets/ref_img/Wave_Jinhsi.jpg", "assets/ref_audio/Wave_Jinhsi.wav", "鸣潮-今汐"), ("assets/ref_img/Wave_Carlotta.jpg", "assets/ref_audio/Wave_Carlotta.wav", "鸣潮-珂莱塔"), ] gallery_items = [(img, label) for img, _, label in refer_items] gallery = gr.Gallery( value=gallery_items, label=None, show_label=False, allow_preview=False, columns=3, # Adjusted for sidebar width height="auto", object_fit="cover", elem_classes="gallery_reference_example" ) def on_image_click(evt: gr.SelectData): index = evt.index if index is not None and 0 <= index < len(refer_items): audio_path = refer_items[index][1] return gr.update(value=audio_path) return gr.update() gallery.select( fn=on_image_click, inputs=None, outputs=refer_speech ) clear_btn = gr.Button("Clear") autoplay_checkbox = gr.Checkbox( label="Autoplay", value=True ) text_input = gr.Textbox( show_label=False, placeholder="Type your message here...", container=False ) talk_input = gr.Audio(sources=["microphone", ], visible=False, type="filepath", label="Audio Message" ) with gr.Row(equal_height=True): upload_btn = gr.UploadButton( label="Upload", file_types=["image", "video", "audio"], file_count="single", size="md", scale=1, visible=True ) chat_mode_selector = gr.Radio( choices=["Text", "Talk"], value="Text", show_label=False, interactive=True, elem_classes="small-radio", scale=2, ) submit_mode_selector = gr.Radio( choices=["Chat", "TTS"], value="Chat", show_label=False, interactive=True, elem_classes="small-radio", scale=2, ) gr.Column(scale=3, min_width=0) submit_btn = gr.Button( "Send", variant="primary", min_width=0, size="md", scale=1, visible=True ) tts_submit_btn = gr.Button( "TTS Submit", variant="primary", min_width=0, size="md", scale=1, visible=False ) # State to hold history state = gr.State([]) def handle_upload(file, history): if file: mime = client_utils.get_mimetype(file.name) if mime.startswith("image"): history.append({"role": "user", "content": (file, )}) return file, None, None, history elif mime.startswith("video"): history.append({"role": "user", "content": (file, )}) return None, file, None, history elif mime.startswith("audio"): history.append({"role": "user", "content": (file, )}) return None, None, file, history return None, None, None, history upload_btn.upload( handle_upload, inputs=[upload_btn, chatbot], outputs=[image_input, video_input, audio_input, chatbot] ) def clear_chat_history(): return [], gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value="Text"), gr.update(value="Chat") def handle_submit(mode, *inputs): if mode == "Chat": yield from chat_predict(*inputs) else: # mode == "TTS" yield from tts_predict(*inputs) # submit_event = gr.on( # triggers=[submit_btn.click, text_input.submit], # fn=chat_predict, # inputs=[ # text_input, refer_speech, audio_input, talk_input, image_input, video_input, chatbot, # system_prompt_textbox, autoplay_checkbox # ], # outputs=[ # text_input, refer_speech, audio_input, talk_input, image_input, video_input, audio_output, chatbot # ]) # tts_submit_event = gr.on( # triggers=[tts_submit_btn.click], # fn=tts_predict, # inputs=[ # text_input, refer_speech, system_prompt_textbox, chatbot, autoplay_checkbox # ], # outputs=[ # text_input, refer_speech, audio_input, talk_input, image_input, video_input, audio_output, chatbot # ]) submit_event = gr.on( triggers=[submit_btn.click, text_input.submit, tts_submit_btn.click], fn=handle_submit, inputs=[ submit_mode_selector, text_input, refer_speech, audio_input, talk_input, image_input, video_input, chatbot, system_prompt_textbox, autoplay_checkbox ], outputs=[ text_input, refer_speech, audio_input, talk_input, image_input, video_input, audio_output, chatbot ] ) def chat_switch_mode(mode): if mode == "Text": return gr.update(visible=True), gr.update(visible=False) else: return gr.update(visible=False), gr.update(visible=True) def submit_switch_mode(mode): if mode == "Chat": return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False) else: return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True) chat_mode_selector.change( fn=chat_switch_mode, inputs=[chat_mode_selector], outputs=[text_input, talk_input] ) submit_mode_selector.change( fn=submit_switch_mode, inputs=[submit_mode_selector], outputs=[upload_btn, submit_btn, tts_submit_btn] ) clear_btn.click(fn=clear_chat_history, inputs=None, outputs=[ chatbot, text_input, refer_speech, audio_input, talk_input, image_input, video_input, audio_output, chat_mode_selector, submit_mode_selector ]) # Custom CSS for ChatGPT-like styling demo.css = """ .gradio-container { max-width: 90vw !important; margin: auto; padding: 20px; } .chatbot .message { border-radius: 10px; padding: 10px; } .chatbot .user { background-color: #f0f0f0; } .chatbot .assistant { background-color: #e6e6e6; } footer {display:none !important} """ demo.queue(default_concurrency_limit=100, max_size=100).launch(max_threads=100, share=True, show_error=True, ssl_certfile=None, ssl_keyfile=None, ssl_verify=False, inbrowser=args.inbrowser) def _get_args(): parser = ArgumentParser() parser.add_argument('--cpu-only', action='store_true', help='Run demo with CPU only') parser.add_argument('--flash-attn2', action='store_true', default=False, help='Enable flash_attention_2 when loading the model.') parser.add_argument('--share', action='store_true', default=False, help='Create a publicly shareable link for the interface.') parser.add_argument('--inbrowser', action='store_true', default=False, help='Automatically launch the interface in a new tab on the default browser.') parser.add_argument('--ui-language', type=str, choices=['en', 'zh'], default='en', help='Display language for the UI.') parser.add_argument("--model", type=str, default="wcy1122/MGM-Omni-7B") parser.add_argument("--speechlm", type=str, default="wcy1122/MGM-Omni-TTS-2B-0927") parser.add_argument("--load-8bit", action="store_true") parser.add_argument("--load-4bit", action="store_true") args = parser.parse_args() return args if __name__ == "__main__": args = _get_args() tokenizer, tokenizer_speech, model, image_processor, audio_processor, asr_pipe = _load_model_processor(args) _launch_demo(args, tokenizer, tokenizer_speech, model, image_processor, audio_processor, asr_pipe)