Spaces:
Running
on
Zero
Running
on
Zero
add utils files
Browse files- mgm/constants.py +47 -0
- mgm/conversation.py +333 -0
- mgm/mm_utils.py +453 -0
- mgm/utils.py +126 -0
mgm/constants.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
| 2 |
+
WORKER_HEART_BEAT_INTERVAL = 15
|
| 3 |
+
|
| 4 |
+
LOGDIR = "."
|
| 5 |
+
|
| 6 |
+
# Model Constants
|
| 7 |
+
IGNORE_INDEX = -100
|
| 8 |
+
IMAGE_TOKEN_INDEX = -200
|
| 9 |
+
PREDICT_TOKEN_INDEX = -300
|
| 10 |
+
SPEECH_TOKEN_INDEX = -500
|
| 11 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
| 12 |
+
DEFAULT_SPEECH_TOKEN = "<speech>"
|
| 13 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
| 14 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
| 15 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
| 16 |
+
IMAGE_PLACEHOLDER = "<image-placeholder>"
|
| 17 |
+
DEFAULT_PREDICT_TOKEN = "<predict>"
|
| 18 |
+
AUDIO_START = '<|audio_start|>'
|
| 19 |
+
AUDIO_END = '<|audio_end|>'
|
| 20 |
+
AUDIO_SEP = '<|audio_sep|>'
|
| 21 |
+
|
| 22 |
+
DESCRIPT_PROMPT = [
|
| 23 |
+
"Describe this image thoroughly.",
|
| 24 |
+
"Provide a detailed description in this picture.",
|
| 25 |
+
"Detail every aspect of what's in this picture.",
|
| 26 |
+
"Explain this image with precision and detail.",
|
| 27 |
+
"Give a comprehensive description of this visual.",
|
| 28 |
+
"Elaborate on the specifics within this image.",
|
| 29 |
+
"Offer a detailed account of this picture's contents.",
|
| 30 |
+
"Describe in detail what this image portrays.",
|
| 31 |
+
"Break down this image into detailed descriptions.",
|
| 32 |
+
"Provide a thorough description of the elements in this image."]
|
| 33 |
+
|
| 34 |
+
BLANK_SPEECH_TOKENS = [
|
| 35 |
+
1707, 1788, 1950, 1951, 1959, 2031, 2040, 2112, 3894, 3903,
|
| 36 |
+
3975, 4056, 4137, 4138, 4143, 4146, 4164, 4173, 4218, 4219,
|
| 37 |
+
4227, 4299, 4300, 5520, 5523, 5547, 5760, 5763, 5766, 5790,
|
| 38 |
+
6009, 6081, 6082, 6087, 6090, 6091, 6092, 6117, 6162, 6163,
|
| 39 |
+
6165, 6168, 6171, 6172, 6198, 6243, 6244, 6249, 6252, 6253,
|
| 40 |
+
6261, 6276, 6279, 6296, 6299, 6321, 6324, 6325, 6330, 6331,
|
| 41 |
+
6333, 6334, 6335, 6339, 6342, 6351, 6357, 6360, 6361, 6378,
|
| 42 |
+
6387, 6399, 6402, 6405, 6406, 6408, 6411, 6412, 6413, 6414,
|
| 43 |
+
6415, 6416, 6432, 6433, 6435, 6436, 6438, 6439, 6441, 6459,
|
| 44 |
+
6460, 6461, 6466, 6468, 6469, 6480, 6483, 6486, 6487, 6489,
|
| 45 |
+
6492, 6493, 6495, 6496, 6511, 6513, 6514, 6519, 6522, 6523,
|
| 46 |
+
6540, 6541, 6549
|
| 47 |
+
]
|
mgm/conversation.py
ADDED
|
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import dataclasses
|
| 2 |
+
from enum import auto, Enum
|
| 3 |
+
from typing import List, Tuple
|
| 4 |
+
import base64
|
| 5 |
+
from io import BytesIO
|
| 6 |
+
from PIL import Image
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def img_to_base64(img_file_path):
|
| 10 |
+
with open(img_file_path, "rb") as wav_file:
|
| 11 |
+
wav_data = wav_file.read()
|
| 12 |
+
base64_encoded = base64.b64encode(wav_data).decode('utf-8')
|
| 13 |
+
return base64_encoded
|
| 14 |
+
|
| 15 |
+
def wav_to_base64(wav_file_path):
|
| 16 |
+
with open(wav_file_path, "rb") as wav_file:
|
| 17 |
+
wav_data = wav_file.read()
|
| 18 |
+
base64_encoded = base64.b64encode(wav_data).decode('utf-8')
|
| 19 |
+
return base64_encoded
|
| 20 |
+
|
| 21 |
+
def mov_to_base64(mov_file_path):
|
| 22 |
+
with open(mov_file_path, "rb") as mov_file:
|
| 23 |
+
mov_data = mov_file.read()
|
| 24 |
+
base64_encoded = base64.b64encode(mov_data).decode('utf-8')
|
| 25 |
+
return base64_encoded
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class SeparatorStyle(Enum):
|
| 29 |
+
"""Different separator style."""
|
| 30 |
+
SINGLE = auto()
|
| 31 |
+
TWO = auto()
|
| 32 |
+
PLAIN = auto()
|
| 33 |
+
SPEECH_PLAIN = auto()
|
| 34 |
+
QWEN2 = auto()
|
| 35 |
+
QWEN2VL = auto()
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
@dataclasses.dataclass
|
| 39 |
+
class Conversation:
|
| 40 |
+
"""A class that keeps all conversation history."""
|
| 41 |
+
system: str
|
| 42 |
+
roles: List[str]
|
| 43 |
+
messages: List[List[str]]
|
| 44 |
+
offset: int
|
| 45 |
+
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
| 46 |
+
sep: str = "###"
|
| 47 |
+
sep2: str = None
|
| 48 |
+
version: str = "Unknown"
|
| 49 |
+
|
| 50 |
+
skip_next: bool = False
|
| 51 |
+
|
| 52 |
+
def get_prompt(self):
|
| 53 |
+
messages = self.messages
|
| 54 |
+
if len(messages) > 0 and type(messages[0][1]) is tuple:
|
| 55 |
+
messages = self.messages.copy()
|
| 56 |
+
prompt_token = messages[0][1][0]
|
| 57 |
+
init_role, init_msg = messages[0].copy()
|
| 58 |
+
init_msg = init_msg[0].replace(prompt_token, "").strip()
|
| 59 |
+
messages[0] = (init_role, f"{prompt_token}\n" + init_msg)
|
| 60 |
+
|
| 61 |
+
if self.sep_style == SeparatorStyle.SINGLE:
|
| 62 |
+
ret = self.system + self.sep
|
| 63 |
+
for role, message in messages:
|
| 64 |
+
if message:
|
| 65 |
+
if type(message) is tuple:
|
| 66 |
+
message = message[0]
|
| 67 |
+
ret += role + ": " + message + self.sep
|
| 68 |
+
else:
|
| 69 |
+
ret += role + ":"
|
| 70 |
+
elif self.sep_style == SeparatorStyle.TWO:
|
| 71 |
+
seps = [self.sep, self.sep2]
|
| 72 |
+
ret = self.system + seps[0]
|
| 73 |
+
for i, (role, message) in enumerate(messages):
|
| 74 |
+
if message:
|
| 75 |
+
if type(message) is tuple:
|
| 76 |
+
message = message[0]
|
| 77 |
+
ret += role + ": " + message + seps[i % 2]
|
| 78 |
+
else:
|
| 79 |
+
ret += role + ":"
|
| 80 |
+
elif self.sep_style == SeparatorStyle.QWEN2:
|
| 81 |
+
ret = self.system + self.sep
|
| 82 |
+
for role, message in messages:
|
| 83 |
+
if message:
|
| 84 |
+
if type(message) is tuple:
|
| 85 |
+
message = message[0]
|
| 86 |
+
ret += role + message + self.sep
|
| 87 |
+
else:
|
| 88 |
+
ret += role
|
| 89 |
+
elif self.sep_style == SeparatorStyle.QWEN2VL:
|
| 90 |
+
ret = self.system + self.sep
|
| 91 |
+
for role, message in messages:
|
| 92 |
+
if message:
|
| 93 |
+
if type(message) is tuple:
|
| 94 |
+
message = message[0]
|
| 95 |
+
ret += role + message + self.sep
|
| 96 |
+
else:
|
| 97 |
+
ret += role
|
| 98 |
+
elif self.sep_style == SeparatorStyle.PLAIN:
|
| 99 |
+
seps = [self.sep, self.sep2]
|
| 100 |
+
ret = self.system
|
| 101 |
+
for i, (role, message) in enumerate(messages):
|
| 102 |
+
if message:
|
| 103 |
+
if type(message) is tuple:
|
| 104 |
+
message, _, _ = message
|
| 105 |
+
ret += message + seps[i % 2]
|
| 106 |
+
else:
|
| 107 |
+
ret += ""
|
| 108 |
+
elif self.sep_style == SeparatorStyle.SPEECH_PLAIN:
|
| 109 |
+
seps = [self.sep, self.sep2]
|
| 110 |
+
ret = self.system
|
| 111 |
+
for i, (role, message) in enumerate(messages):
|
| 112 |
+
if message:
|
| 113 |
+
if type(message) is tuple:
|
| 114 |
+
message, _, _ = message
|
| 115 |
+
ret += message + seps[i % 2]
|
| 116 |
+
else:
|
| 117 |
+
ret += ""
|
| 118 |
+
else:
|
| 119 |
+
raise ValueError(f"Invalid style: {self.sep_style}")
|
| 120 |
+
|
| 121 |
+
return ret
|
| 122 |
+
|
| 123 |
+
def append_message(self, role, message):
|
| 124 |
+
self.messages.append([role, message])
|
| 125 |
+
|
| 126 |
+
def process_image(self, image, image_process_mode, return_pil=False, image_format='PNG', max_len=1344, min_len=672):
|
| 127 |
+
if image_process_mode == "Pad":
|
| 128 |
+
def expand2square(pil_img, background_color=(122, 116, 104)):
|
| 129 |
+
width, height = pil_img.size
|
| 130 |
+
if width == height:
|
| 131 |
+
return pil_img
|
| 132 |
+
elif width > height:
|
| 133 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
| 134 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
| 135 |
+
return result
|
| 136 |
+
else:
|
| 137 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
| 138 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
| 139 |
+
return result
|
| 140 |
+
image = expand2square(image)
|
| 141 |
+
elif image_process_mode in ["Default", "Crop"]:
|
| 142 |
+
pass
|
| 143 |
+
elif image_process_mode == "Resize":
|
| 144 |
+
image = image.resize((336, 336))
|
| 145 |
+
else:
|
| 146 |
+
raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
|
| 147 |
+
if max(image.size) > max_len:
|
| 148 |
+
max_hw, min_hw = max(image.size), min(image.size)
|
| 149 |
+
aspect_ratio = max_hw / min_hw
|
| 150 |
+
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
|
| 151 |
+
longest_edge = int(shortest_edge * aspect_ratio)
|
| 152 |
+
W, H = image.size
|
| 153 |
+
if H > W:
|
| 154 |
+
H, W = longest_edge, shortest_edge
|
| 155 |
+
else:
|
| 156 |
+
H, W = shortest_edge, longest_edge
|
| 157 |
+
image = image.resize((W, H))
|
| 158 |
+
if return_pil:
|
| 159 |
+
return image
|
| 160 |
+
else:
|
| 161 |
+
buffered = BytesIO()
|
| 162 |
+
image.save(buffered, format=image_format)
|
| 163 |
+
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
|
| 164 |
+
return img_b64_str
|
| 165 |
+
|
| 166 |
+
def get_images(self, return_pil=False):
|
| 167 |
+
images = []
|
| 168 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
| 169 |
+
if i % 2 == 0:
|
| 170 |
+
if type(msg) is tuple:
|
| 171 |
+
msg, speech, image, video, image_process_mode = msg
|
| 172 |
+
images.append(image)
|
| 173 |
+
return images
|
| 174 |
+
|
| 175 |
+
def get_speeches(self):
|
| 176 |
+
speeches = []
|
| 177 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
| 178 |
+
if i % 2 == 0:
|
| 179 |
+
if type(msg) is tuple:
|
| 180 |
+
msg, speech, image, video, image_process_mode = msg
|
| 181 |
+
speeches.append(speech)
|
| 182 |
+
print(speeches)
|
| 183 |
+
return speeches
|
| 184 |
+
|
| 185 |
+
def get_videos(self):
|
| 186 |
+
videos = []
|
| 187 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
| 188 |
+
if i % 2 == 0:
|
| 189 |
+
if type(msg) is tuple:
|
| 190 |
+
msg, speech, image, video, image_process_mode = msg
|
| 191 |
+
videos.append(video)
|
| 192 |
+
print(videos)
|
| 193 |
+
return videos
|
| 194 |
+
|
| 195 |
+
def to_gradio_chatbot(self):
|
| 196 |
+
ret = []
|
| 197 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
| 198 |
+
if i % 2 == 0:
|
| 199 |
+
if type(msg) is tuple:
|
| 200 |
+
msg, speech, image, video, image_process_mode = msg
|
| 201 |
+
if video is not None:
|
| 202 |
+
base64_string = mov_to_base64(video)
|
| 203 |
+
video_str = f'''
|
| 204 |
+
<video width="300" controls>
|
| 205 |
+
<source src="data:video/quicktime;base64,{base64_string}" type="video/quicktime">
|
| 206 |
+
Your browser does not support the video element.
|
| 207 |
+
</video>
|
| 208 |
+
'''
|
| 209 |
+
msg = video_str + msg.replace('<image>', '').strip().replace('<speech>', '').strip()
|
| 210 |
+
ret.append([msg, None])
|
| 211 |
+
elif image is not None:
|
| 212 |
+
image = Image.open(image)
|
| 213 |
+
img_b64_str = self.process_image(
|
| 214 |
+
image, "Default", return_pil=False,
|
| 215 |
+
image_format='JPEG')
|
| 216 |
+
img_str = f'<img src="data:image/jpeg;base64,{img_b64_str}" alt="user upload image" />'
|
| 217 |
+
if speech is not None:
|
| 218 |
+
base64_string = wav_to_base64(speech)
|
| 219 |
+
aud_str = f'''
|
| 220 |
+
<audio controls>
|
| 221 |
+
<source src="data:audio/wav;base64,{base64_string}" type="audio/wav">
|
| 222 |
+
Your browser does not support the audio element.
|
| 223 |
+
</audio>
|
| 224 |
+
'''
|
| 225 |
+
msg = img_str + aud_str + msg.replace('<image>', '').strip().replace('<speech>', '').strip()
|
| 226 |
+
ret.append([msg, None])
|
| 227 |
+
else:
|
| 228 |
+
msg = img_str + msg.replace('<image>', '').strip()
|
| 229 |
+
ret.append([msg, None])
|
| 230 |
+
elif speech is not None:
|
| 231 |
+
base64_string = wav_to_base64(speech)
|
| 232 |
+
aud_str = f'''
|
| 233 |
+
<audio controls>
|
| 234 |
+
<source src="data:audio/wav;base64,{base64_string}" type="audio/wav">
|
| 235 |
+
Your browser does not support the audio element.
|
| 236 |
+
</audio>
|
| 237 |
+
'''
|
| 238 |
+
msg = aud_str + msg.replace('<speech>', '').strip()
|
| 239 |
+
ret.append([msg, None])
|
| 240 |
+
else:
|
| 241 |
+
ret.append([msg, None])
|
| 242 |
+
else:
|
| 243 |
+
ret.append([msg, None])
|
| 244 |
+
else:
|
| 245 |
+
if type(msg) is tuple and len(msg) == 2:
|
| 246 |
+
msg, img_b64_str = msg
|
| 247 |
+
img_str = f'<img src="data:image/jpeg;base64,{img_b64_str}" alt="user upload image" />'
|
| 248 |
+
msg = msg.strip() + img_str
|
| 249 |
+
ret[-1][-1] = msg
|
| 250 |
+
return ret
|
| 251 |
+
|
| 252 |
+
def copy(self):
|
| 253 |
+
return Conversation(
|
| 254 |
+
system=self.system,
|
| 255 |
+
roles=self.roles,
|
| 256 |
+
messages=[[x, y] for x, y in self.messages],
|
| 257 |
+
offset=self.offset,
|
| 258 |
+
sep_style=self.sep_style,
|
| 259 |
+
sep=self.sep,
|
| 260 |
+
sep2=self.sep2,
|
| 261 |
+
version=self.version)
|
| 262 |
+
|
| 263 |
+
def dict(self):
|
| 264 |
+
if len(self.get_images()) > 0:
|
| 265 |
+
return {
|
| 266 |
+
"system": self.system,
|
| 267 |
+
"roles": self.roles,
|
| 268 |
+
"messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
|
| 269 |
+
"offset": self.offset,
|
| 270 |
+
"sep": self.sep,
|
| 271 |
+
"sep2": self.sep2,
|
| 272 |
+
}
|
| 273 |
+
return {
|
| 274 |
+
"system": self.system,
|
| 275 |
+
"roles": self.roles,
|
| 276 |
+
"messages": self.messages,
|
| 277 |
+
"offset": self.offset,
|
| 278 |
+
"sep": self.sep,
|
| 279 |
+
"sep2": self.sep2,
|
| 280 |
+
}
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
conv_qwen = Conversation(
|
| 284 |
+
system="""<|im_start|>system\nYou are a helpful assistant.""",
|
| 285 |
+
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
| 286 |
+
version="qwen",
|
| 287 |
+
messages=[],
|
| 288 |
+
offset=0,
|
| 289 |
+
sep_style=SeparatorStyle.QWEN2,
|
| 290 |
+
sep="<|im_end|>\n",
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
conv_qwen2vl = Conversation(
|
| 294 |
+
system="""<|im_start|>system\nYou are a helpful assistant.""",
|
| 295 |
+
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
| 296 |
+
version="qwen",
|
| 297 |
+
messages=[],
|
| 298 |
+
offset=0,
|
| 299 |
+
sep_style=SeparatorStyle.QWEN2VL,
|
| 300 |
+
sep="<|im_end|>\n",
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
conv_llava_plain = Conversation(
|
| 304 |
+
system="",
|
| 305 |
+
roles=("", ""),
|
| 306 |
+
messages=(
|
| 307 |
+
),
|
| 308 |
+
offset=0,
|
| 309 |
+
sep_style=SeparatorStyle.PLAIN,
|
| 310 |
+
sep="\n",
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
speech_plain = Conversation(
|
| 314 |
+
system="",
|
| 315 |
+
roles=("", ""),
|
| 316 |
+
messages=(
|
| 317 |
+
),
|
| 318 |
+
offset=0,
|
| 319 |
+
sep_style=SeparatorStyle.SPEECH_PLAIN,
|
| 320 |
+
sep="\n",
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
default_conversation = conv_qwen2vl
|
| 324 |
+
conv_templates = {
|
| 325 |
+
"qwen2": conv_qwen,
|
| 326 |
+
"qwen2vl": conv_qwen2vl,
|
| 327 |
+
"plain": conv_llava_plain,
|
| 328 |
+
"speech_plain": speech_plain,
|
| 329 |
+
}
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
if __name__ == "__main__":
|
| 333 |
+
print(default_conversation.get_prompt())
|
mgm/mm_utils.py
ADDED
|
@@ -0,0 +1,453 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL import Image
|
| 2 |
+
from io import BytesIO
|
| 3 |
+
import base64
|
| 4 |
+
import math
|
| 5 |
+
import ast
|
| 6 |
+
import re
|
| 7 |
+
import torch
|
| 8 |
+
from transformers import StoppingCriteria
|
| 9 |
+
from mgm.constants import IMAGE_TOKEN_INDEX, SPEECH_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_SPEECH_TOKEN, IGNORE_INDEX
|
| 10 |
+
import numpy as np
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def resize_and_center_crop(image, shortest_edge_length):
|
| 14 |
+
# Calculate new dimensions and resize
|
| 15 |
+
aspect_ratio = float(image.width) / float(image.height)
|
| 16 |
+
if aspect_ratio > 1:
|
| 17 |
+
new_width = int(shortest_edge_length * aspect_ratio)
|
| 18 |
+
new_height = shortest_edge_length
|
| 19 |
+
else:
|
| 20 |
+
new_width = shortest_edge_length
|
| 21 |
+
new_height = int(shortest_edge_length / aspect_ratio)
|
| 22 |
+
resized_image = image.resize((new_width, new_height), Image.ANTIALIAS)
|
| 23 |
+
|
| 24 |
+
# Calculate the position and perform the center crop
|
| 25 |
+
left = (new_width - shortest_edge_length) / 2
|
| 26 |
+
top = (new_height - shortest_edge_length) / 2
|
| 27 |
+
right = (new_width + shortest_edge_length) / 2
|
| 28 |
+
bottom = (new_height + shortest_edge_length) / 2
|
| 29 |
+
cropped_image = resized_image.crop((left, top, right, bottom))
|
| 30 |
+
|
| 31 |
+
return cropped_image
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def auto_pad_images(image, grid_params):
|
| 35 |
+
assert isinstance(image, Image.Image), "Input should be a Pillow Image"
|
| 36 |
+
assert len(grid_params) > 0, "Grid parameters should not be empty"
|
| 37 |
+
|
| 38 |
+
# Step 1: Calculate and find the closest aspect ratio
|
| 39 |
+
input_width, input_height = image.size
|
| 40 |
+
input_aspect_ratio = input_width / input_height
|
| 41 |
+
candidate_resolutions = [(w / h, w, h) for w in grid_params for h in grid_params]
|
| 42 |
+
closest_aspect_ratio = min(candidate_resolutions, key=lambda x: abs(input_aspect_ratio - x[0]))
|
| 43 |
+
|
| 44 |
+
candidate_resolutions = [(x[1], x[2]) for x in candidate_resolutions if abs(x[0] - closest_aspect_ratio[0]) < 1e-3]
|
| 45 |
+
|
| 46 |
+
target_resolution = min(candidate_resolutions, key=lambda res: abs(max(input_width, input_height) / max(res) - 1))
|
| 47 |
+
|
| 48 |
+
resize_width, resize_height = target_resolution
|
| 49 |
+
if input_width > input_height:
|
| 50 |
+
resize_height = int(resize_width / input_aspect_ratio)
|
| 51 |
+
else:
|
| 52 |
+
resize_width = int(resize_height * input_aspect_ratio)
|
| 53 |
+
resized_image = image.resize((resize_width, resize_height), Image.ANTIALIAS)
|
| 54 |
+
|
| 55 |
+
# Step 5: Pad the resized image if necessary to match the target resolution
|
| 56 |
+
pad_width = target_resolution[0] - resize_width
|
| 57 |
+
pad_height = target_resolution[1] - resize_height
|
| 58 |
+
padded_image = Image.new("RGB", target_resolution, color=(0, 0, 0))
|
| 59 |
+
padded_image.paste(resized_image, (pad_width // 2, pad_height // 2))
|
| 60 |
+
|
| 61 |
+
return padded_image
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def extract_patches(image, patch_size, overlap_ratio):
|
| 65 |
+
assert isinstance(image, Image.Image), "Input should be a Pillow Image"
|
| 66 |
+
assert patch_size > 0, "Patch size should be greater than 0"
|
| 67 |
+
assert 0 <= overlap_ratio < 1, "Overlap ratio should be between 0 and 1"
|
| 68 |
+
|
| 69 |
+
W, H = image.size
|
| 70 |
+
patches = []
|
| 71 |
+
|
| 72 |
+
stride = int(patch_size * (1 - overlap_ratio))
|
| 73 |
+
|
| 74 |
+
num_patches_y = (H - patch_size) // stride + 1
|
| 75 |
+
num_patches_x = (W - patch_size) // stride + 1
|
| 76 |
+
|
| 77 |
+
y_start = (H - (num_patches_y - 1) * stride - patch_size) // 2
|
| 78 |
+
x_start = (W - (num_patches_x - 1) * stride - patch_size) // 2
|
| 79 |
+
|
| 80 |
+
for y in range(y_start, y_start + num_patches_y * stride, stride):
|
| 81 |
+
for x in range(x_start, x_start + num_patches_x * stride, stride):
|
| 82 |
+
patch = image.crop((x, y, x + patch_size, y + patch_size))
|
| 83 |
+
patches.append(patch)
|
| 84 |
+
|
| 85 |
+
return patches
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def process_highres_image_crop_split(image, data_args, processor=None):
|
| 89 |
+
crop_resolution = data_args.image_crop_resolution
|
| 90 |
+
split_resolution = data_args.image_split_resolution
|
| 91 |
+
if processor is None:
|
| 92 |
+
processor = data_args.image_processor
|
| 93 |
+
image_crop = resize_and_center_crop(image, crop_resolution)
|
| 94 |
+
image_patches = extract_patches(image_crop, patch_size=split_resolution, overlap_ratio=0)
|
| 95 |
+
image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]
|
| 96 |
+
return torch.stack(image_patches, dim=0)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def process_highres_image(image, processor, grid_pinpoints):
|
| 100 |
+
grid_params = [int(x) for x in grid_pinpoints.split(",")]
|
| 101 |
+
width_height = max(image.size)
|
| 102 |
+
fit_grid_params = [x for x in grid_params if x >= width_height]
|
| 103 |
+
if len(fit_grid_params) == 0:
|
| 104 |
+
select_size = max(grid_params)
|
| 105 |
+
else:
|
| 106 |
+
select_size = min(fit_grid_params)
|
| 107 |
+
# FIXME: always select the 448
|
| 108 |
+
select_size = max(grid_params)
|
| 109 |
+
image_padded = expand2square(image, tuple(int(x * 255) for x in processor.image_mean))
|
| 110 |
+
|
| 111 |
+
# FIXME: this seems to be a bug that it always resizes instead of padding
|
| 112 |
+
image_original_resize = image.resize((processor.size["shortest_edge"], processor.size["shortest_edge"]))
|
| 113 |
+
image_padded = image_padded.resize((select_size, select_size))
|
| 114 |
+
image_patches = extract_patches(image_padded, patch_size=processor.size["shortest_edge"], overlap_ratio=0)
|
| 115 |
+
image_patches = [image_original_resize] + image_patches
|
| 116 |
+
image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]
|
| 117 |
+
return torch.stack(image_patches, dim=0)
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def select_best_resolution(original_size, possible_resolutions):
|
| 121 |
+
"""
|
| 122 |
+
Selects the best resolution from a list of possible resolutions based on the original size.
|
| 123 |
+
|
| 124 |
+
Args:
|
| 125 |
+
original_size (tuple): The original size of the image in the format (width, height).
|
| 126 |
+
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
|
| 127 |
+
|
| 128 |
+
Returns:
|
| 129 |
+
tuple: The best fit resolution in the format (width, height).
|
| 130 |
+
"""
|
| 131 |
+
original_width, original_height = original_size
|
| 132 |
+
best_fit = None
|
| 133 |
+
max_effective_resolution = 0
|
| 134 |
+
min_wasted_resolution = float("inf")
|
| 135 |
+
|
| 136 |
+
for width, height in possible_resolutions:
|
| 137 |
+
# Calculate the downscaled size to keep the aspect ratio
|
| 138 |
+
scale = min(width / original_width, height / original_height)
|
| 139 |
+
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
|
| 140 |
+
|
| 141 |
+
# Calculate effective and wasted resolutions
|
| 142 |
+
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
|
| 143 |
+
wasted_resolution = (width * height) - effective_resolution
|
| 144 |
+
|
| 145 |
+
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
|
| 146 |
+
max_effective_resolution = effective_resolution
|
| 147 |
+
min_wasted_resolution = wasted_resolution
|
| 148 |
+
best_fit = (width, height)
|
| 149 |
+
|
| 150 |
+
return best_fit
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
def resize_and_pad_image(image, target_resolution):
|
| 154 |
+
"""
|
| 155 |
+
Resize and pad an image to a target resolution while maintaining aspect ratio.
|
| 156 |
+
|
| 157 |
+
Args:
|
| 158 |
+
image (PIL.Image.Image): The input image.
|
| 159 |
+
target_resolution (tuple): The target resolution (width, height) of the image.
|
| 160 |
+
|
| 161 |
+
Returns:
|
| 162 |
+
PIL.Image.Image: The resized and padded image.
|
| 163 |
+
"""
|
| 164 |
+
original_width, original_height = image.size
|
| 165 |
+
target_width, target_height = target_resolution
|
| 166 |
+
|
| 167 |
+
# Determine which dimension (width or height) to fill
|
| 168 |
+
scale_w = target_width / original_width
|
| 169 |
+
scale_h = target_height / original_height
|
| 170 |
+
|
| 171 |
+
if scale_w < scale_h:
|
| 172 |
+
# Width will be filled completely
|
| 173 |
+
new_width = target_width
|
| 174 |
+
new_height = min(math.ceil(original_height * scale_w), target_height)
|
| 175 |
+
else:
|
| 176 |
+
# Height will be filled completely
|
| 177 |
+
new_height = target_height
|
| 178 |
+
new_width = min(math.ceil(original_width * scale_h), target_width)
|
| 179 |
+
|
| 180 |
+
# Resize the image
|
| 181 |
+
resized_image = image.resize((new_width, new_height))
|
| 182 |
+
|
| 183 |
+
# Create a new image with the target size and paste the resized image onto it
|
| 184 |
+
new_image = Image.new("RGB", (target_width, target_height), (0, 0, 0))
|
| 185 |
+
paste_x = (target_width - new_width) // 2
|
| 186 |
+
paste_y = (target_height - new_height) // 2
|
| 187 |
+
new_image.paste(resized_image, (paste_x, paste_y))
|
| 188 |
+
|
| 189 |
+
return new_image
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def divide_to_patches(image, patch_size):
|
| 193 |
+
"""
|
| 194 |
+
Divides an image into patches of a specified size.
|
| 195 |
+
|
| 196 |
+
Args:
|
| 197 |
+
image (PIL.Image.Image): The input image.
|
| 198 |
+
patch_size (int): The size of each patch.
|
| 199 |
+
|
| 200 |
+
Returns:
|
| 201 |
+
list: A list of PIL.Image.Image objects representing the patches.
|
| 202 |
+
"""
|
| 203 |
+
patches = []
|
| 204 |
+
width, height = image.size
|
| 205 |
+
for i in range(0, height, patch_size):
|
| 206 |
+
for j in range(0, width, patch_size):
|
| 207 |
+
box = (j, i, j + patch_size, i + patch_size)
|
| 208 |
+
patch = image.crop(box)
|
| 209 |
+
patches.append(patch)
|
| 210 |
+
|
| 211 |
+
return patches
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
|
| 215 |
+
"""
|
| 216 |
+
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
|
| 217 |
+
|
| 218 |
+
Args:
|
| 219 |
+
image_size (tuple): The size of the input image in the format (width, height).
|
| 220 |
+
grid_pinpoints (str): A string representation of a list of possible resolutions.
|
| 221 |
+
patch_size (int): The size of each image patch.
|
| 222 |
+
|
| 223 |
+
Returns:
|
| 224 |
+
tuple: The shape of the image patch grid in the format (width, height).
|
| 225 |
+
"""
|
| 226 |
+
if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints:
|
| 227 |
+
assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]"
|
| 228 |
+
# Use regex to extract the range from the input string
|
| 229 |
+
matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints)
|
| 230 |
+
range_start = tuple(map(int, matches[0]))
|
| 231 |
+
range_end = tuple(map(int, matches[-1]))
|
| 232 |
+
# Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
|
| 233 |
+
grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)]
|
| 234 |
+
# Multiply all elements by patch_size
|
| 235 |
+
grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints]
|
| 236 |
+
if type(grid_pinpoints) is list:
|
| 237 |
+
possible_resolutions = grid_pinpoints
|
| 238 |
+
else:
|
| 239 |
+
possible_resolutions = ast.literal_eval(grid_pinpoints)
|
| 240 |
+
width, height = select_best_resolution(image_size, possible_resolutions)
|
| 241 |
+
return width // patch_size, height // patch_size
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
def process_anyres_image(image, processor, grid_pinpoints, overlap_ratio=0):
|
| 245 |
+
"""
|
| 246 |
+
Process an image with variable resolutions.
|
| 247 |
+
|
| 248 |
+
Args:
|
| 249 |
+
image (PIL.Image.Image): The input image to be processed.
|
| 250 |
+
processor: The image processor object.
|
| 251 |
+
grid_pinpoints (str): A string representation of a list of possible resolutions.
|
| 252 |
+
|
| 253 |
+
Returns:
|
| 254 |
+
torch.Tensor: A tensor containing the processed image patches.
|
| 255 |
+
"""
|
| 256 |
+
# Convert grid_pinpoints from string to list
|
| 257 |
+
if grid_pinpoints == '[]':
|
| 258 |
+
patches = []
|
| 259 |
+
else:
|
| 260 |
+
if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints:
|
| 261 |
+
try:
|
| 262 |
+
patch_size = processor.size[0]
|
| 263 |
+
except Exception as e:
|
| 264 |
+
# CLIP
|
| 265 |
+
if "shortest_edge" in processor.size.keys():
|
| 266 |
+
patch_size = processor.size["shortest_edge"]
|
| 267 |
+
# SigLip
|
| 268 |
+
elif "height" in processor.size.keys():
|
| 269 |
+
patch_size = processor.size["height"]
|
| 270 |
+
assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]"
|
| 271 |
+
# Use regex to extract the range from the input string
|
| 272 |
+
matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints)
|
| 273 |
+
range_start = tuple(map(int, matches[0]))
|
| 274 |
+
range_end = tuple(map(int, matches[-1]))
|
| 275 |
+
# Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
|
| 276 |
+
grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)]
|
| 277 |
+
# Multiply all elements by patch_size
|
| 278 |
+
grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints]
|
| 279 |
+
|
| 280 |
+
if type(grid_pinpoints) is list:
|
| 281 |
+
possible_resolutions = grid_pinpoints
|
| 282 |
+
else:
|
| 283 |
+
possible_resolutions = ast.literal_eval(grid_pinpoints)
|
| 284 |
+
best_resolution = select_best_resolution(image.size, possible_resolutions)
|
| 285 |
+
image_padded = resize_and_pad_image(image, best_resolution)
|
| 286 |
+
|
| 287 |
+
if hasattr(processor, "crop_size"):
|
| 288 |
+
patches = extract_patches(image_padded, processor.crop_size["height"], overlap_ratio)
|
| 289 |
+
elif hasattr(processor, "size"):
|
| 290 |
+
patches = extract_patches(image_padded, processor.size["height"], overlap_ratio)
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
# FIXME: this seems to be a bug that it resizes instead of pad.
|
| 294 |
+
# but to keep it consistent with previous, i will keep it as it is
|
| 295 |
+
# TODO: uncomment below to ablate with the padding
|
| 296 |
+
if isinstance(processor.size, dict):
|
| 297 |
+
# CLIP
|
| 298 |
+
if "shortest_edge" in processor.size.keys():
|
| 299 |
+
shortest_edge = processor.size["shortest_edge"]
|
| 300 |
+
# SigLip
|
| 301 |
+
elif "height" in processor.size.keys():
|
| 302 |
+
shortest_edge = processor.size["height"]
|
| 303 |
+
|
| 304 |
+
else:
|
| 305 |
+
shortest_edge = min(processor.size)
|
| 306 |
+
image_original_resize = image.resize((shortest_edge, shortest_edge))
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
image_patches = [image_original_resize] + patches
|
| 310 |
+
|
| 311 |
+
image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]
|
| 312 |
+
return torch.stack(image_patches, dim=0)
|
| 313 |
+
|
| 314 |
+
|
| 315 |
+
def load_image_from_base64(image):
|
| 316 |
+
return Image.open(BytesIO(base64.b64decode(image)))
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
def expand2square(pil_img, background_color):
|
| 320 |
+
width, height = pil_img.size
|
| 321 |
+
if width == height:
|
| 322 |
+
return pil_img
|
| 323 |
+
elif width > height:
|
| 324 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
| 325 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
| 326 |
+
return result
|
| 327 |
+
else:
|
| 328 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
| 329 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
| 330 |
+
return result
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
def process_images(images, image_processor, model_cfg):
|
| 334 |
+
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
|
| 335 |
+
new_images = []
|
| 336 |
+
if image_aspect_ratio == "highres":
|
| 337 |
+
for image in images:
|
| 338 |
+
image = process_highres_image(image, image_processor, model_cfg.image_grid_pinpoints)
|
| 339 |
+
new_images.append(image)
|
| 340 |
+
elif image_aspect_ratio == "anyres" or "anyres_max" in image_aspect_ratio:
|
| 341 |
+
for image in images:
|
| 342 |
+
image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints)
|
| 343 |
+
new_images.append(image)
|
| 344 |
+
elif image_aspect_ratio == "crop_split":
|
| 345 |
+
for image in images:
|
| 346 |
+
image = process_highres_image_crop_split(image, model_cfg, image_processor)
|
| 347 |
+
new_images.append(image)
|
| 348 |
+
elif image_aspect_ratio == "pad":
|
| 349 |
+
for image in images:
|
| 350 |
+
image = expand2square(image, tuple(int(x * 255) for x in image_processor.image_mean))
|
| 351 |
+
image = image_processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
|
| 352 |
+
new_images.append(image)
|
| 353 |
+
else:
|
| 354 |
+
return image_processor.preprocess(images, return_tensors="pt")["pixel_values"]
|
| 355 |
+
if all(x.shape == new_images[0].shape for x in new_images):
|
| 356 |
+
new_images = torch.stack(new_images, dim=0)
|
| 357 |
+
return new_images
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
|
| 361 |
+
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<image>")]
|
| 362 |
+
|
| 363 |
+
def insert_separator(X, sep):
|
| 364 |
+
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]
|
| 365 |
+
|
| 366 |
+
input_ids = []
|
| 367 |
+
offset = 0
|
| 368 |
+
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
|
| 369 |
+
offset = 1
|
| 370 |
+
input_ids.append(prompt_chunks[0][0])
|
| 371 |
+
|
| 372 |
+
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
|
| 373 |
+
input_ids.extend(x[offset:])
|
| 374 |
+
|
| 375 |
+
if return_tensors is not None:
|
| 376 |
+
if return_tensors == "pt":
|
| 377 |
+
return torch.tensor(input_ids, dtype=torch.long)
|
| 378 |
+
raise ValueError(f"Unsupported tensor type: {return_tensors}")
|
| 379 |
+
return input_ids
|
| 380 |
+
|
| 381 |
+
def tokenizer_speech_token(prompt, tokenizer, speech_token_index=SPEECH_TOKEN_INDEX, return_tensors=None):
|
| 382 |
+
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split(DEFAULT_SPEECH_TOKEN)]
|
| 383 |
+
|
| 384 |
+
def insert_separator(X, sep):
|
| 385 |
+
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
|
| 386 |
+
|
| 387 |
+
input_ids = []
|
| 388 |
+
offset = 0
|
| 389 |
+
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
|
| 390 |
+
offset = 1
|
| 391 |
+
input_ids.append(prompt_chunks[0][0])
|
| 392 |
+
|
| 393 |
+
for x in insert_separator(prompt_chunks, [speech_token_index] * (offset + 1)):
|
| 394 |
+
input_ids.extend(x[offset:])
|
| 395 |
+
|
| 396 |
+
if return_tensors is not None:
|
| 397 |
+
if return_tensors == 'pt':
|
| 398 |
+
return torch.tensor(input_ids, dtype=torch.long)
|
| 399 |
+
raise ValueError(f'Unsupported tensor type: {return_tensors}')
|
| 400 |
+
return input_ids
|
| 401 |
+
|
| 402 |
+
def tokenizer_image_speech_token(prompt, tokenizer, return_tensors=None):
|
| 403 |
+
# pdb.set_trace()
|
| 404 |
+
PATTERN = re.compile(rf'({DEFAULT_IMAGE_TOKEN}|{DEFAULT_SPEECH_TOKEN})')
|
| 405 |
+
input_ids = []
|
| 406 |
+
for chunk in PATTERN.split(prompt):
|
| 407 |
+
if chunk == DEFAULT_IMAGE_TOKEN:
|
| 408 |
+
input_ids.extend([IMAGE_TOKEN_INDEX])
|
| 409 |
+
elif chunk == DEFAULT_SPEECH_TOKEN:
|
| 410 |
+
input_ids.extend([SPEECH_TOKEN_INDEX])
|
| 411 |
+
else:
|
| 412 |
+
input_ids.extend(tokenizer(chunk).input_ids)
|
| 413 |
+
|
| 414 |
+
if return_tensors is not None:
|
| 415 |
+
if return_tensors == 'pt':
|
| 416 |
+
return torch.tensor(input_ids, dtype=torch.long)
|
| 417 |
+
raise ValueError(f'Unsupported tensor type: {return_tensors}')
|
| 418 |
+
return input_ids
|
| 419 |
+
|
| 420 |
+
|
| 421 |
+
def get_model_name_from_path(model_path):
|
| 422 |
+
model_path = model_path.strip("/")
|
| 423 |
+
model_paths = model_path.split("/")
|
| 424 |
+
if model_paths[-1].startswith("checkpoint-"):
|
| 425 |
+
return model_paths[-2] + "_" + model_paths[-1]
|
| 426 |
+
else:
|
| 427 |
+
return model_paths[-1]
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
class KeywordsStoppingCriteria(StoppingCriteria):
|
| 431 |
+
def __init__(self, keywords, tokenizer, input_ids):
|
| 432 |
+
self.keywords = keywords
|
| 433 |
+
self.keyword_ids = []
|
| 434 |
+
for keyword in keywords:
|
| 435 |
+
cur_keyword_ids = tokenizer(keyword).input_ids
|
| 436 |
+
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
|
| 437 |
+
cur_keyword_ids = cur_keyword_ids[1:]
|
| 438 |
+
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
|
| 439 |
+
self.tokenizer = tokenizer
|
| 440 |
+
self.start_len = input_ids.shape[1]
|
| 441 |
+
|
| 442 |
+
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
| 443 |
+
assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" # TODO
|
| 444 |
+
offset = min(output_ids.shape[1] - self.start_len, 3)
|
| 445 |
+
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
|
| 446 |
+
for keyword_id in self.keyword_ids:
|
| 447 |
+
if output_ids[0, -keyword_id.shape[0] :] == keyword_id:
|
| 448 |
+
return True
|
| 449 |
+
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
|
| 450 |
+
for keyword in self.keywords:
|
| 451 |
+
if keyword in outputs:
|
| 452 |
+
return True
|
| 453 |
+
return False
|
mgm/utils.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import datetime
|
| 2 |
+
import logging
|
| 3 |
+
import logging.handlers
|
| 4 |
+
import os
|
| 5 |
+
import sys
|
| 6 |
+
|
| 7 |
+
import requests
|
| 8 |
+
|
| 9 |
+
from mgm.constants import LOGDIR
|
| 10 |
+
|
| 11 |
+
server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
|
| 12 |
+
moderation_msg = "YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN."
|
| 13 |
+
|
| 14 |
+
handler = None
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def build_logger(logger_name, logger_filename):
|
| 18 |
+
global handler
|
| 19 |
+
|
| 20 |
+
formatter = logging.Formatter(
|
| 21 |
+
fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
|
| 22 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
# Set the format of root handlers
|
| 26 |
+
if not logging.getLogger().handlers:
|
| 27 |
+
logging.basicConfig(level=logging.INFO)
|
| 28 |
+
logging.getLogger().handlers[0].setFormatter(formatter)
|
| 29 |
+
|
| 30 |
+
# Redirect stdout and stderr to loggers
|
| 31 |
+
stdout_logger = logging.getLogger("stdout")
|
| 32 |
+
stdout_logger.setLevel(logging.INFO)
|
| 33 |
+
sl = StreamToLogger(stdout_logger, logging.INFO)
|
| 34 |
+
sys.stdout = sl
|
| 35 |
+
|
| 36 |
+
stderr_logger = logging.getLogger("stderr")
|
| 37 |
+
stderr_logger.setLevel(logging.ERROR)
|
| 38 |
+
sl = StreamToLogger(stderr_logger, logging.ERROR)
|
| 39 |
+
sys.stderr = sl
|
| 40 |
+
|
| 41 |
+
# Get logger
|
| 42 |
+
logger = logging.getLogger(logger_name)
|
| 43 |
+
logger.setLevel(logging.INFO)
|
| 44 |
+
|
| 45 |
+
# Add a file handler for all loggers
|
| 46 |
+
if handler is None:
|
| 47 |
+
os.makedirs(LOGDIR, exist_ok=True)
|
| 48 |
+
filename = os.path.join(LOGDIR, logger_filename)
|
| 49 |
+
handler = logging.handlers.TimedRotatingFileHandler(
|
| 50 |
+
filename, when='D', utc=True, encoding='UTF-8')
|
| 51 |
+
handler.setFormatter(formatter)
|
| 52 |
+
|
| 53 |
+
for name, item in logging.root.manager.loggerDict.items():
|
| 54 |
+
if isinstance(item, logging.Logger):
|
| 55 |
+
item.addHandler(handler)
|
| 56 |
+
|
| 57 |
+
return logger
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
class StreamToLogger(object):
|
| 61 |
+
"""
|
| 62 |
+
Fake file-like stream object that redirects writes to a logger instance.
|
| 63 |
+
"""
|
| 64 |
+
def __init__(self, logger, log_level=logging.INFO):
|
| 65 |
+
self.terminal = sys.stdout
|
| 66 |
+
self.logger = logger
|
| 67 |
+
self.log_level = log_level
|
| 68 |
+
self.linebuf = ''
|
| 69 |
+
|
| 70 |
+
def __getattr__(self, attr):
|
| 71 |
+
return getattr(self.terminal, attr)
|
| 72 |
+
|
| 73 |
+
def write(self, buf):
|
| 74 |
+
temp_linebuf = self.linebuf + buf
|
| 75 |
+
self.linebuf = ''
|
| 76 |
+
for line in temp_linebuf.splitlines(True):
|
| 77 |
+
# From the io.TextIOWrapper docs:
|
| 78 |
+
# On output, if newline is None, any '\n' characters written
|
| 79 |
+
# are translated to the system default line separator.
|
| 80 |
+
# By default sys.stdout.write() expects '\n' newlines and then
|
| 81 |
+
# translates them so this is still cross platform.
|
| 82 |
+
if line[-1] == '\n':
|
| 83 |
+
self.logger.log(self.log_level, line.rstrip())
|
| 84 |
+
else:
|
| 85 |
+
self.linebuf += line
|
| 86 |
+
|
| 87 |
+
def flush(self):
|
| 88 |
+
if self.linebuf != '':
|
| 89 |
+
self.logger.log(self.log_level, self.linebuf.rstrip())
|
| 90 |
+
self.linebuf = ''
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def disable_torch_init():
|
| 94 |
+
"""
|
| 95 |
+
Disable the redundant torch default initialization to accelerate model creation.
|
| 96 |
+
"""
|
| 97 |
+
import torch
|
| 98 |
+
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
|
| 99 |
+
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def violates_moderation(text):
|
| 103 |
+
"""
|
| 104 |
+
Check whether the text violates OpenAI moderation API.
|
| 105 |
+
"""
|
| 106 |
+
url = "https://api.openai.com/v1/moderations"
|
| 107 |
+
headers = {"Content-Type": "application/json",
|
| 108 |
+
"Authorization": "Bearer " + os.environ["OPENAI_API_KEY"]}
|
| 109 |
+
text = text.replace("\n", "")
|
| 110 |
+
data = "{" + '"input": ' + f'"{text}"' + "}"
|
| 111 |
+
data = data.encode("utf-8")
|
| 112 |
+
try:
|
| 113 |
+
ret = requests.post(url, headers=headers, data=data, timeout=5)
|
| 114 |
+
flagged = ret.json()["results"][0]["flagged"]
|
| 115 |
+
except requests.exceptions.RequestException as e:
|
| 116 |
+
flagged = False
|
| 117 |
+
except KeyError as e:
|
| 118 |
+
flagged = False
|
| 119 |
+
|
| 120 |
+
return flagged
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def pretty_print_semaphore(semaphore):
|
| 124 |
+
if semaphore is None:
|
| 125 |
+
return "None"
|
| 126 |
+
return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"
|