Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from PIL import Image | |
| import gradio as gr | |
| import spaces | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer | |
| import os | |
| from threading import Thread | |
| HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
| MODEL_ID = "CohereForAI/aya-23-8B" | |
| MODEL_ID2 = "CohereForAI/aya-23-35B" | |
| MODEL_NAME = MODEL_ID2.split("/")[-1] | |
| TITLE = "<h1><center>Aya-23-Chatbox</center></h1>" | |
| DESCRIPTION = f'<h3><center>MODEL: <a href="https://hf.co/{MODEL_ID}">{MODEL_NAME}</a></center></h3>' | |
| CSS = """ | |
| .duplicate-button { | |
| margin: auto !important; | |
| color: white !important; | |
| background: black !important; | |
| border-radius: 100vh !important; | |
| } | |
| """ | |
| #QUANTIZE | |
| QUANTIZE_4BIT = True | |
| USE_GRAD_CHECKPOINTING = True | |
| TRAIN_BATCH_SIZE = 2 | |
| TRAIN_MAX_SEQ_LENGTH = 512 | |
| USE_FLASH_ATTENTION = False | |
| GRAD_ACC_STEPS = 16 | |
| quantization_config = None | |
| if QUANTIZE_4BIT: | |
| quantization_config = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_quant_type="nf4", | |
| bnb_4bit_use_double_quant=True, | |
| bnb_4bit_compute_dtype=torch.bfloat16, | |
| ) | |
| attn_implementation = None | |
| if USE_FLASH_ATTENTION: | |
| attn_implementation="flash_attention_2" | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_ID2, | |
| quantization_config=quantization_config, | |
| attn_implementation=attn_implementation, | |
| torch_dtype=torch.bfloat16, | |
| device_map="auto", | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_ID2) | |
| def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int): | |
| print(f'message is - {message}') | |
| print(f'history is - {history}') | |
| conversation = [] | |
| for prompt, answer in history: | |
| conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}]) | |
| conversation.append({"role": "user", "content": message}) | |
| print(f"Conversation is -\n{conversation}") | |
| input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device) | |
| streamer = TextIteratorStreamer(tokenizer, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,}) | |
| generate_kwargs = dict( | |
| input_ids=input_ids, | |
| streamer=streamer, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=True, | |
| temperature=temperature, | |
| ) | |
| thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| yield buffer | |
| chatbot = gr.Chatbot(height=450) | |
| with gr.Blocks(css=CSS) as demo: | |
| gr.HTML(TITLE) | |
| gr.HTML(DESCRIPTION) | |
| gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") | |
| gr.ChatInterface( | |
| fn=stream_chat, | |
| chatbot=chatbot, | |
| fill_height=True, | |
| additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
| additional_inputs=[ | |
| gr.Slider( | |
| minimum=0, | |
| maximum=1, | |
| step=0.1, | |
| value=0.8, | |
| label="Temperature", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=128, | |
| maximum=4096, | |
| step=1, | |
| value=1024, | |
| label="Max new tokens", | |
| render=False, | |
| ), | |
| ], | |
| examples=[ | |
| ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."], | |
| ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."], | |
| ["Tell me a random fun fact about the Roman Empire."], | |
| ["Show me a code snippet of a website's sticky header in CSS and JavaScript."], | |
| ], | |
| cache_examples=False, | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |