Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
import spaces
|
| 2 |
import torch
|
|
|
|
| 3 |
from fastapi import FastAPI, Request
|
| 4 |
from fastapi.middleware.cors import CORSMiddleware
|
| 5 |
from fastapi.responses import HTMLResponse, JSONResponse
|
| 6 |
-
from diffusers import
|
| 7 |
-
from safetensors.torch import load_file
|
| 8 |
from PIL import Image
|
| 9 |
import base64
|
| 10 |
import io
|
|
@@ -12,97 +12,80 @@ import asyncio
|
|
| 12 |
from concurrent.futures import ThreadPoolExecutor
|
| 13 |
|
| 14 |
# -----------------------------
|
| 15 |
-
#
|
| 16 |
# -----------------------------
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
| 22 |
|
| 23 |
_cached_pipelines = {}
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
# Semaphore controls how many can run at once (to protect memory)
|
| 27 |
-
semaphore = asyncio.Semaphore(6)
|
| 28 |
|
| 29 |
# -----------------------------
|
| 30 |
-
# Pipeline
|
| 31 |
# -----------------------------
|
| 32 |
-
def load_pipeline(
|
| 33 |
-
if
|
| 34 |
-
return _cached_pipelines[
|
| 35 |
|
| 36 |
-
print(
|
| 37 |
-
device = "cpu"
|
| 38 |
-
dtype = torch.float32
|
| 39 |
|
| 40 |
-
pipe =
|
| 41 |
BASE_MODEL,
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
).to(
|
| 45 |
|
| 46 |
pipe.enable_attention_slicing()
|
| 47 |
pipe.enable_vae_tiling()
|
| 48 |
|
| 49 |
-
|
| 50 |
-
try:
|
| 51 |
-
print(f"🎨 Applying LoRA weights: {model_path}")
|
| 52 |
-
lora_weights = load_file(model_path)
|
| 53 |
-
pipe.unet.load_state_dict(lora_weights, strict=False)
|
| 54 |
-
print("✅ LoRA loaded successfully.")
|
| 55 |
-
except Exception as e:
|
| 56 |
-
print(f"⚠️ LoRA load failed: {e}")
|
| 57 |
-
|
| 58 |
-
_cached_pipelines[style] = pipe
|
| 59 |
return pipe
|
| 60 |
|
| 61 |
|
| 62 |
# -----------------------------
|
| 63 |
-
#
|
| 64 |
# -----------------------------
|
| 65 |
-
def generate_image_sync(prompt: str, style: str =
|
| 66 |
-
pipe = load_pipeline(
|
| 67 |
generator = torch.Generator(device="cpu").manual_seed(int(seed))
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
"clean background, cinematic tone, detailed illustration, digital painting"
|
| 72 |
-
)
|
| 73 |
|
| 74 |
image = pipe(
|
| 75 |
-
prompt=
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
num_inference_steps=
|
| 79 |
-
guidance_scale=
|
| 80 |
generator=generator,
|
| 81 |
).images[0]
|
| 82 |
|
| 83 |
-
w, h = image.size
|
| 84 |
-
image = image.crop((5, 5, w - 5, h - 5)).resize((512, 512))
|
| 85 |
return image
|
| 86 |
|
| 87 |
|
| 88 |
# -----------------------------
|
| 89 |
-
# Async Wrapper
|
| 90 |
# -----------------------------
|
| 91 |
async def generate_image_async(prompt, style, seed):
|
| 92 |
async with semaphore:
|
| 93 |
-
loop = asyncio.
|
| 94 |
return await loop.run_in_executor(executor, generate_image_sync, prompt, style, seed)
|
| 95 |
|
| 96 |
|
| 97 |
# -----------------------------
|
| 98 |
# FastAPI App Setup
|
| 99 |
# -----------------------------
|
| 100 |
-
app = FastAPI(title="
|
| 101 |
|
| 102 |
-
# Enable cross-app requests (CORS)
|
| 103 |
app.add_middleware(
|
| 104 |
CORSMiddleware,
|
| 105 |
-
allow_origins=["*"],
|
| 106 |
allow_credentials=True,
|
| 107 |
allow_methods=["*"],
|
| 108 |
allow_headers=["*"],
|
|
@@ -114,22 +97,21 @@ def home():
|
|
| 114 |
return """
|
| 115 |
<html>
|
| 116 |
<head>
|
| 117 |
-
<title>
|
| 118 |
<style>
|
| 119 |
body { font-family: Arial; text-align: center; padding: 2rem; background-color: #f9f9f9; }
|
| 120 |
input, select, button { margin: 0.5rem; padding: 0.6rem; width: 300px; border-radius: 6px; border: 1px solid #ccc; }
|
| 121 |
button { background-color: #444; color: white; cursor: pointer; }
|
| 122 |
button:hover { background-color: #333; }
|
| 123 |
-
img { margin-top: 1rem; border-radius: 12px; max-width:
|
| 124 |
</style>
|
| 125 |
</head>
|
| 126 |
<body>
|
| 127 |
-
<h2>🎨
|
| 128 |
<form id="generateForm">
|
| 129 |
-
<input id="prompt" placeholder="
|
| 130 |
<select id="style">
|
| 131 |
-
<option value="
|
| 132 |
-
<option value="GH1bli">GH1bli</option>
|
| 133 |
</select><br>
|
| 134 |
<input id="seed" type="number" value="42"><br>
|
| 135 |
<button type="submit">Generate Image</button>
|
|
@@ -172,7 +154,7 @@ async def api_generate(request: Request):
|
|
| 172 |
try:
|
| 173 |
data = await request.json()
|
| 174 |
prompt = data.get("prompt", "").strip()
|
| 175 |
-
style = data.get("style", "
|
| 176 |
seed = data.get("seed", 42)
|
| 177 |
if not prompt:
|
| 178 |
return JSONResponse({"status": "error", "message": "Prompt required"}, status_code=400)
|
|
@@ -197,7 +179,7 @@ async def api_generate(request: Request):
|
|
| 197 |
|
| 198 |
|
| 199 |
# -----------------------------
|
| 200 |
-
# ZeroGPU
|
| 201 |
# -----------------------------
|
| 202 |
@spaces.GPU
|
| 203 |
def keep_alive():
|
|
@@ -206,6 +188,6 @@ def keep_alive():
|
|
| 206 |
|
| 207 |
if __name__ == "__main__":
|
| 208 |
import uvicorn
|
| 209 |
-
print("🚀 Launching FastAPI
|
| 210 |
keep_alive()
|
| 211 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
| 1 |
import spaces
|
| 2 |
import torch
|
| 3 |
+
import os
|
| 4 |
from fastapi import FastAPI, Request
|
| 5 |
from fastapi.middleware.cors import CORSMiddleware
|
| 6 |
from fastapi.responses import HTMLResponse, JSONResponse
|
| 7 |
+
from diffusers import FluxPipeline
|
|
|
|
| 8 |
from PIL import Image
|
| 9 |
import base64
|
| 10 |
import io
|
|
|
|
| 12 |
from concurrent.futures import ThreadPoolExecutor
|
| 13 |
|
| 14 |
# -----------------------------
|
| 15 |
+
# Hugging Face Token Support
|
| 16 |
# -----------------------------
|
| 17 |
+
HF_TOKEN = os.getenv("HF_TOKEN") # Must be set on server / spaces
|
| 18 |
+
|
| 19 |
+
# -----------------------------
|
| 20 |
+
# Model (FLUX.1-schnell)
|
| 21 |
+
# -----------------------------
|
| 22 |
+
BASE_MODEL = "black-forest-labs/FLUX.1-schnell"
|
| 23 |
|
| 24 |
_cached_pipelines = {}
|
| 25 |
+
executor = ThreadPoolExecutor(max_workers=4)
|
| 26 |
+
semaphore = asyncio.Semaphore(4)
|
|
|
|
|
|
|
| 27 |
|
| 28 |
# -----------------------------
|
| 29 |
+
# Load FLUX Pipeline
|
| 30 |
# -----------------------------
|
| 31 |
+
def load_pipeline():
|
| 32 |
+
if "flux" in _cached_pipelines:
|
| 33 |
+
return _cached_pipelines["flux"]
|
| 34 |
|
| 35 |
+
print("🔹 Loading FLUX.1-schnell Model")
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
pipe = FluxPipeline.from_pretrained(
|
| 38 |
BASE_MODEL,
|
| 39 |
+
torch_dtype=torch.float32,
|
| 40 |
+
use_auth_token=HF_TOKEN, # <--- token applied here
|
| 41 |
+
).to("cpu")
|
| 42 |
|
| 43 |
pipe.enable_attention_slicing()
|
| 44 |
pipe.enable_vae_tiling()
|
| 45 |
|
| 46 |
+
_cached_pipelines["flux"] = pipe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
return pipe
|
| 48 |
|
| 49 |
|
| 50 |
# -----------------------------
|
| 51 |
+
# Image Generation
|
| 52 |
# -----------------------------
|
| 53 |
+
def generate_image_sync(prompt: str, style: str = None, seed: int = 42):
|
| 54 |
+
pipe = load_pipeline()
|
| 55 |
generator = torch.Generator(device="cpu").manual_seed(int(seed))
|
| 56 |
|
| 57 |
+
width = 1920
|
| 58 |
+
height = 1080
|
|
|
|
|
|
|
| 59 |
|
| 60 |
image = pipe(
|
| 61 |
+
prompt=prompt,
|
| 62 |
+
width=width,
|
| 63 |
+
height=height,
|
| 64 |
+
num_inference_steps=20,
|
| 65 |
+
guidance_scale=3.5,
|
| 66 |
generator=generator,
|
| 67 |
).images[0]
|
| 68 |
|
|
|
|
|
|
|
| 69 |
return image
|
| 70 |
|
| 71 |
|
| 72 |
# -----------------------------
|
| 73 |
+
# Async Wrapper
|
| 74 |
# -----------------------------
|
| 75 |
async def generate_image_async(prompt, style, seed):
|
| 76 |
async with semaphore:
|
| 77 |
+
loop = asyncio.get_running_loop()
|
| 78 |
return await loop.run_in_executor(executor, generate_image_sync, prompt, style, seed)
|
| 79 |
|
| 80 |
|
| 81 |
# -----------------------------
|
| 82 |
# FastAPI App Setup
|
| 83 |
# -----------------------------
|
| 84 |
+
app = FastAPI(title="FLUX Image Generator API", version="2.1")
|
| 85 |
|
|
|
|
| 86 |
app.add_middleware(
|
| 87 |
CORSMiddleware,
|
| 88 |
+
allow_origins=["*"],
|
| 89 |
allow_credentials=True,
|
| 90 |
allow_methods=["*"],
|
| 91 |
allow_headers=["*"],
|
|
|
|
| 97 |
return """
|
| 98 |
<html>
|
| 99 |
<head>
|
| 100 |
+
<title>FLUX Generator</title>
|
| 101 |
<style>
|
| 102 |
body { font-family: Arial; text-align: center; padding: 2rem; background-color: #f9f9f9; }
|
| 103 |
input, select, button { margin: 0.5rem; padding: 0.6rem; width: 300px; border-radius: 6px; border: 1px solid #ccc; }
|
| 104 |
button { background-color: #444; color: white; cursor: pointer; }
|
| 105 |
button:hover { background-color: #333; }
|
| 106 |
+
img { margin-top: 1rem; border-radius: 12px; max-width: 90%; }
|
| 107 |
</style>
|
| 108 |
</head>
|
| 109 |
<body>
|
| 110 |
+
<h2>🎨 FLUX.1-schnell Image Generator</h2>
|
| 111 |
<form id="generateForm">
|
| 112 |
+
<input id="prompt" placeholder="Describe your image..." required><br>
|
| 113 |
<select id="style">
|
| 114 |
+
<option value="default">Default (FLUX)</option>
|
|
|
|
| 115 |
</select><br>
|
| 116 |
<input id="seed" type="number" value="42"><br>
|
| 117 |
<button type="submit">Generate Image</button>
|
|
|
|
| 154 |
try:
|
| 155 |
data = await request.json()
|
| 156 |
prompt = data.get("prompt", "").strip()
|
| 157 |
+
style = data.get("style", "default")
|
| 158 |
seed = data.get("seed", 42)
|
| 159 |
if not prompt:
|
| 160 |
return JSONResponse({"status": "error", "message": "Prompt required"}, status_code=400)
|
|
|
|
| 179 |
|
| 180 |
|
| 181 |
# -----------------------------
|
| 182 |
+
# ZeroGPU Keep Alive
|
| 183 |
# -----------------------------
|
| 184 |
@spaces.GPU
|
| 185 |
def keep_alive():
|
|
|
|
| 188 |
|
| 189 |
if __name__ == "__main__":
|
| 190 |
import uvicorn
|
| 191 |
+
print("🚀 Launching FastAPI with FLUX + HF Token")
|
| 192 |
keep_alive()
|
| 193 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|