Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,89 +1,55 @@
|
|
| 1 |
-
import spaces
|
| 2 |
-
import torch
|
| 3 |
-
import os
|
| 4 |
from fastapi import FastAPI, Request
|
| 5 |
from fastapi.middleware.cors import CORSMiddleware
|
| 6 |
from fastapi.responses import HTMLResponse, JSONResponse
|
| 7 |
from diffusers import FluxPipeline
|
| 8 |
from PIL import Image
|
| 9 |
-
import base64
|
| 10 |
-
import io
|
| 11 |
-
import asyncio
|
| 12 |
from concurrent.futures import ThreadPoolExecutor
|
| 13 |
|
| 14 |
-
|
| 15 |
-
# Hugging Face Token Support
|
| 16 |
-
# -----------------------------
|
| 17 |
-
HF_TOKEN = os.getenv("HF_TOKEN") # Must be set on server / spaces
|
| 18 |
-
|
| 19 |
-
# -----------------------------
|
| 20 |
-
# Model (FLUX.1-schnell)
|
| 21 |
-
# -----------------------------
|
| 22 |
BASE_MODEL = "black-forest-labs/FLUX.1-schnell"
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
| 27 |
|
| 28 |
-
# -----------------------------
|
| 29 |
-
# Load FLUX Pipeline (Optimized)
|
| 30 |
-
# -----------------------------
|
| 31 |
def load_pipeline():
|
| 32 |
-
if "flux" in
|
| 33 |
-
return
|
| 34 |
-
|
| 35 |
-
print("🔹 Loading FLUX.1-schnell Model (Optimized for CPU)")
|
| 36 |
-
|
| 37 |
pipe = FluxPipeline.from_pretrained(
|
| 38 |
BASE_MODEL,
|
| 39 |
-
torch_dtype=torch.float16,
|
| 40 |
use_auth_token=HF_TOKEN,
|
| 41 |
-
)
|
| 42 |
-
|
| 43 |
-
pipe.to("cpu", dtype=torch.float16) # <= Ensure CPU uses FP16
|
| 44 |
pipe.enable_attention_slicing()
|
| 45 |
pipe.enable_vae_tiling()
|
| 46 |
-
|
| 47 |
-
_cached_pipelines["flux"] = pipe
|
| 48 |
return pipe
|
| 49 |
|
| 50 |
-
|
| 51 |
-
# -----------------------------
|
| 52 |
-
# Image Generation (Optimized)
|
| 53 |
-
# -----------------------------
|
| 54 |
-
def generate_image_sync(prompt: str, style: str = None, seed: int = 42):
|
| 55 |
pipe = load_pipeline()
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
height = 576
|
| 60 |
-
|
| 61 |
image = pipe(
|
| 62 |
prompt=prompt,
|
| 63 |
-
width=
|
| 64 |
-
height=
|
| 65 |
-
num_inference_steps=
|
| 66 |
-
guidance_scale=2.
|
| 67 |
-
generator=
|
| 68 |
).images[0]
|
|
|
|
|
|
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
# -----------------------------
|
| 74 |
-
# Async Wrapper
|
| 75 |
-
# -----------------------------
|
| 76 |
-
async def generate_image_async(prompt, style, seed):
|
| 77 |
async with semaphore:
|
| 78 |
loop = asyncio.get_running_loop()
|
| 79 |
-
return await loop.run_in_executor(executor, generate_image_sync, prompt,
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
# -----------------------------
|
| 83 |
-
# FastAPI App Setup
|
| 84 |
-
# -----------------------------
|
| 85 |
-
app = FastAPI(title="FLUX Image Generator API", version="2.2")
|
| 86 |
|
|
|
|
| 87 |
app.add_middleware(
|
| 88 |
CORSMiddleware,
|
| 89 |
allow_origins=["*"],
|
|
@@ -92,103 +58,57 @@ app.add_middleware(
|
|
| 92 |
allow_headers=["*"],
|
| 93 |
)
|
| 94 |
|
| 95 |
-
|
| 96 |
@app.get("/", response_class=HTMLResponse)
|
| 97 |
def home():
|
| 98 |
return """
|
| 99 |
-
<html>
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
</form>
|
| 120 |
-
<div id="result"></div>
|
| 121 |
-
<script>
|
| 122 |
-
const form = document.getElementById("generateForm");
|
| 123 |
-
const resultDiv = document.getElementById("result");
|
| 124 |
-
form.addEventListener("submit", async (e) => {
|
| 125 |
-
e.preventDefault();
|
| 126 |
-
resultDiv.innerHTML = "<p>⏳ Generating image...</p>";
|
| 127 |
-
const data = {
|
| 128 |
-
prompt: document.getElementById("prompt").value,
|
| 129 |
-
style: document.getElementById("style").value,
|
| 130 |
-
seed: parseInt(document.getElementById("seed").value)
|
| 131 |
-
};
|
| 132 |
-
const res = await fetch("/api/generate", {
|
| 133 |
-
method: "POST",
|
| 134 |
-
headers: { "Content-Type": "application/json" },
|
| 135 |
-
body: JSON.stringify(data)
|
| 136 |
-
});
|
| 137 |
-
const json = await res.json();
|
| 138 |
-
if (json.status === "success") {
|
| 139 |
-
resultDiv.innerHTML = `<img src="data:image/png;base64,${json.image_base64}"/><p>✅ Done!</p>`;
|
| 140 |
-
} else {
|
| 141 |
-
resultDiv.innerHTML = `<p style='color:red'>❌ ${json.message}</p>`;
|
| 142 |
-
}
|
| 143 |
-
});
|
| 144 |
-
</script>
|
| 145 |
-
</body>
|
| 146 |
-
</html>
|
| 147 |
"""
|
| 148 |
|
| 149 |
-
|
| 150 |
-
# -----------------------------
|
| 151 |
-
# API Endpoint
|
| 152 |
-
# -----------------------------
|
| 153 |
@app.post("/api/generate")
|
| 154 |
async def api_generate(request: Request):
|
| 155 |
try:
|
| 156 |
data = await request.json()
|
| 157 |
-
prompt = data.get("prompt", "").strip()
|
| 158 |
-
|
| 159 |
-
seed = data.get("seed", 42)
|
| 160 |
if not prompt:
|
| 161 |
-
return JSONResponse({"status": "error", "message": "Prompt required"},
|
| 162 |
except Exception:
|
| 163 |
-
return JSONResponse({"status": "error", "message": "Invalid JSON"},
|
| 164 |
|
| 165 |
try:
|
| 166 |
-
image = await generate_image_async(prompt,
|
| 167 |
-
|
| 168 |
-
image.save(
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
return JSONResponse({
|
| 172 |
-
"status": "success",
|
| 173 |
-
"prompt": prompt,
|
| 174 |
-
"style": style,
|
| 175 |
-
"image_base64": img_base64
|
| 176 |
-
})
|
| 177 |
except Exception as e:
|
| 178 |
print(f"❌ Error: {e}")
|
| 179 |
-
return JSONResponse({"status": "error", "message": str(e)},
|
| 180 |
|
| 181 |
-
|
| 182 |
-
# -----------------------------
|
| 183 |
-
# ZeroGPU Keep Alive
|
| 184 |
-
# -----------------------------
|
| 185 |
@spaces.GPU
|
| 186 |
-
def keep_alive():
|
| 187 |
-
return "ZeroGPU Ready"
|
| 188 |
-
|
| 189 |
|
| 190 |
if __name__ == "__main__":
|
| 191 |
import uvicorn
|
| 192 |
-
print("🚀 Launching
|
| 193 |
keep_alive()
|
| 194 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
| 1 |
+
import os, io, base64, asyncio, torch, spaces
|
|
|
|
|
|
|
| 2 |
from fastapi import FastAPI, Request
|
| 3 |
from fastapi.middleware.cors import CORSMiddleware
|
| 4 |
from fastapi.responses import HTMLResponse, JSONResponse
|
| 5 |
from diffusers import FluxPipeline
|
| 6 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
| 7 |
from concurrent.futures import ThreadPoolExecutor
|
| 8 |
|
| 9 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
BASE_MODEL = "black-forest-labs/FLUX.1-schnell"
|
| 11 |
|
| 12 |
+
_cached = {}
|
| 13 |
+
# moderate concurrency so CPU doesn’t choke
|
| 14 |
+
executor = ThreadPoolExecutor(max_workers=3)
|
| 15 |
+
semaphore = asyncio.Semaphore(3)
|
| 16 |
|
|
|
|
|
|
|
|
|
|
| 17 |
def load_pipeline():
|
| 18 |
+
if "flux" in _cached:
|
| 19 |
+
return _cached["flux"]
|
| 20 |
+
print("🔹 Loading FLUX.1-schnell (fast mode)")
|
|
|
|
|
|
|
| 21 |
pipe = FluxPipeline.from_pretrained(
|
| 22 |
BASE_MODEL,
|
| 23 |
+
torch_dtype=torch.float16,
|
| 24 |
use_auth_token=HF_TOKEN,
|
| 25 |
+
).to("cpu", dtype=torch.float16)
|
|
|
|
|
|
|
| 26 |
pipe.enable_attention_slicing()
|
| 27 |
pipe.enable_vae_tiling()
|
| 28 |
+
_cached["flux"] = pipe
|
|
|
|
| 29 |
return pipe
|
| 30 |
|
| 31 |
+
def generate_image_sync(prompt: str, seed: int = 42):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
pipe = load_pipeline()
|
| 33 |
+
gen = torch.Generator(device="cpu").manual_seed(int(seed))
|
| 34 |
+
# smaller size and steps for speed
|
| 35 |
+
w, h = 768, 432
|
|
|
|
|
|
|
| 36 |
image = pipe(
|
| 37 |
prompt=prompt,
|
| 38 |
+
width=w,
|
| 39 |
+
height=h,
|
| 40 |
+
num_inference_steps=6,
|
| 41 |
+
guidance_scale=2.5,
|
| 42 |
+
generator=gen,
|
| 43 |
).images[0]
|
| 44 |
+
# slight upscale back to 960×540 to keep output clear
|
| 45 |
+
return image.resize((960, 540), Image.BICUBIC)
|
| 46 |
|
| 47 |
+
async def generate_image_async(prompt, seed):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
async with semaphore:
|
| 49 |
loop = asyncio.get_running_loop()
|
| 50 |
+
return await loop.run_in_executor(executor, generate_image_sync, prompt, seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
app = FastAPI(title="FLUX Fast API", version="3.1")
|
| 53 |
app.add_middleware(
|
| 54 |
CORSMiddleware,
|
| 55 |
allow_origins=["*"],
|
|
|
|
| 58 |
allow_headers=["*"],
|
| 59 |
)
|
| 60 |
|
|
|
|
| 61 |
@app.get("/", response_class=HTMLResponse)
|
| 62 |
def home():
|
| 63 |
return """
|
| 64 |
+
<html><head><title>FLUX Fast</title>
|
| 65 |
+
<style>body{font-family:Arial;text-align:center;padding:2rem}
|
| 66 |
+
input,button{margin:.5rem;padding:.6rem;width:300px;border-radius:6px;border:1px solid #ccc}
|
| 67 |
+
button{background:#444;color:#fff}button:hover{background:#333}
|
| 68 |
+
img{margin-top:1rem;max-width:90%;border-radius:12px}</style></head>
|
| 69 |
+
<body><h2>🎨 FLUX Fast Generator</h2>
|
| 70 |
+
<form id='f'><input id='prompt' placeholder='Describe image...' required><br>
|
| 71 |
+
<input id='seed' type='number' value='42'><br>
|
| 72 |
+
<button>Generate</button></form><div id='out'></div>
|
| 73 |
+
<script>
|
| 74 |
+
const f=document.getElementById('f'),o=document.getElementById('out');
|
| 75 |
+
f.addEventListener('submit',async e=>{
|
| 76 |
+
e.preventDefault();o.innerHTML='⏳ Generating...';
|
| 77 |
+
const res=await fetch('/api/generate',{method:'POST',headers:{'Content-Type':'application/json'},
|
| 78 |
+
body:JSON.stringify({prompt:prompt.value,seed:+seed.value})});
|
| 79 |
+
const j=await res.json();
|
| 80 |
+
if(j.status==='success')o.innerHTML=`<img src="data:image/png;base64,${j.image_base64}"/><p>✅ Done!</p>`;
|
| 81 |
+
else o.innerHTML=`<p style='color:red'>❌ ${j.message}</p>`;
|
| 82 |
+
});
|
| 83 |
+
</script></body></html>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
"""
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
@app.post("/api/generate")
|
| 87 |
async def api_generate(request: Request):
|
| 88 |
try:
|
| 89 |
data = await request.json()
|
| 90 |
+
prompt = str(data.get("prompt", "")).strip()
|
| 91 |
+
seed = int(data.get("seed", 42))
|
|
|
|
| 92 |
if not prompt:
|
| 93 |
+
return JSONResponse({"status": "error", "message": "Prompt required"}, 400)
|
| 94 |
except Exception:
|
| 95 |
+
return JSONResponse({"status": "error", "message": "Invalid JSON"}, 400)
|
| 96 |
|
| 97 |
try:
|
| 98 |
+
image = await generate_image_async(prompt, seed)
|
| 99 |
+
buf = io.BytesIO()
|
| 100 |
+
image.save(buf, format="PNG")
|
| 101 |
+
img64 = base64.b64encode(buf.getvalue()).decode("utf-8")
|
| 102 |
+
return JSONResponse({"status": "success", "prompt": prompt, "image_base64": img64})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
except Exception as e:
|
| 104 |
print(f"❌ Error: {e}")
|
| 105 |
+
return JSONResponse({"status": "error", "message": str(e)}, 500)
|
| 106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
@spaces.GPU
|
| 108 |
+
def keep_alive(): return "ZeroGPU Ready"
|
|
|
|
|
|
|
| 109 |
|
| 110 |
if __name__ == "__main__":
|
| 111 |
import uvicorn
|
| 112 |
+
print("🚀 Launching Fast FLUX API")
|
| 113 |
keep_alive()
|
| 114 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|