Duplicate from hyoo/translate
Browse filesCo-authored-by: jin <[email protected]>
- .gitattributes +34 -0
- README.md +14 -0
- app.py +33 -0
- requirements.txt +3 -0
- tokenization_small100.py +364 -0
.gitattributes
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: translate
|
| 3 |
+
emoji: 🌍
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: green
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 3.16.2
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
duplicated_from: hyoo/translate
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# [$hyoo_lingua](https://lingua.hyoo.ru/)
|
app.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import M2M100ForConditionalGeneration
|
| 3 |
+
from tokenization_small100 import SMALL100Tokenizer
|
| 4 |
+
|
| 5 |
+
langs = """af,am,ar,ast,az,ba,be,bg,bn,br,bs,ca,ceb,cs,cy,da,de,el,en,es,et,fa,ff,fi,fr,fy,ga,gd,gl,gu,ha,he,hi,hr,ht,hu,hy,id,ig,ilo,is,it,ja,jv,ka,kk,km,kn,ko,lb,lg,ln,lo,lt,lv,mg,mk,ml,mn,mr,ms,my,ne,nl,no,ns,oc,or,pa,pl,ps,pt,ro,ru,sd,si,sk,sl,so,sq,sr,ss,su,sv,sw,ta,th,tl,tn,tr,uk,ur,uz,vi,wo,xh,yi,yo,zh,zu"""
|
| 6 |
+
lang_list = langs.split(',')
|
| 7 |
+
|
| 8 |
+
model = M2M100ForConditionalGeneration.from_pretrained("alirezamsh/small100")
|
| 9 |
+
tokenizer = SMALL100Tokenizer.from_pretrained("alirezamsh/small100")
|
| 10 |
+
|
| 11 |
+
def translate(lang, text):
|
| 12 |
+
tokenizer.tgt_lang = lang
|
| 13 |
+
encoded_text = tokenizer(text, return_tensors="pt")
|
| 14 |
+
generated_tokens = model.generate(**encoded_text)
|
| 15 |
+
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
| 16 |
+
|
| 17 |
+
with gr.Blocks(analytics_enabled=False) as app:
|
| 18 |
+
|
| 19 |
+
Source = gr.Textbox( label="Source" )
|
| 20 |
+
Language = gr.Dropdown( lang_list, label="Language" )
|
| 21 |
+
Translate = gr.Button( "Translate" )
|
| 22 |
+
Result = gr.Textbox( label="Result" )
|
| 23 |
+
Info = gr.Markdown( "# [$hyoo_lingua](https://lingua.hyoo.ru/)" )
|
| 24 |
+
|
| 25 |
+
Translate.click(
|
| 26 |
+
translate,
|
| 27 |
+
inputs=[ Language, Source ],
|
| 28 |
+
outputs=[Result],
|
| 29 |
+
api_name="translate",
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
app.launch( inline=True )
|
| 33 |
+
block.queue( concurrency_count=2 )
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
sentencepiece
|
| 3 |
+
torch
|
tokenization_small100.py
ADDED
|
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2022 Idiap Research Institute, http://www.idiap.ch/
|
| 2 |
+
# Written by Alireza Mohammadshahi <[email protected]>
|
| 3 |
+
# This is a modified version of https://github.com/huggingface/transformers/blob/main/src/transformers/models/m2m_100/tokenization_m2m_100.py
|
| 4 |
+
# which owns by Fariseq Authors and The HuggingFace Inc. team.
|
| 5 |
+
#
|
| 6 |
+
#
|
| 7 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 8 |
+
# you may not use this file except in compliance with the License.
|
| 9 |
+
# You may obtain a copy of the License at
|
| 10 |
+
#
|
| 11 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 12 |
+
#
|
| 13 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 14 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 15 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 16 |
+
# See the License for the specific language governing permissions and
|
| 17 |
+
# limitations under the License.
|
| 18 |
+
"""Tokenization classes for SMALL100."""
|
| 19 |
+
import json
|
| 20 |
+
import os
|
| 21 |
+
from pathlib import Path
|
| 22 |
+
from shutil import copyfile
|
| 23 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 24 |
+
|
| 25 |
+
import sentencepiece
|
| 26 |
+
|
| 27 |
+
from transformers.tokenization_utils import BatchEncoding, PreTrainedTokenizer
|
| 28 |
+
from transformers.utils import logging
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
logger = logging.get_logger(__name__)
|
| 32 |
+
|
| 33 |
+
SPIECE_UNDERLINE = "▁"
|
| 34 |
+
|
| 35 |
+
VOCAB_FILES_NAMES = {
|
| 36 |
+
"vocab_file": "vocab.json",
|
| 37 |
+
"spm_file": "sentencepiece.bpe.model",
|
| 38 |
+
"tokenizer_config_file": "tokenizer_config.json",
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
| 42 |
+
"vocab_file": {
|
| 43 |
+
"alirezamsh/small100": "https://huggingface.co/alirezamsh/small100/resolve/main/vocab.json",
|
| 44 |
+
},
|
| 45 |
+
"spm_file": {
|
| 46 |
+
"alirezamsh/small100": "https://huggingface.co/alirezamsh/small100/resolve/main/sentencepiece.bpe.model",
|
| 47 |
+
},
|
| 48 |
+
"tokenizer_config_file": {
|
| 49 |
+
"alirezamsh/small100": "https://huggingface.co/alirezamsh/small100/resolve/main/tokenizer_config.json",
|
| 50 |
+
},
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
| 54 |
+
"alirezamsh/small100": 1024,
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
# fmt: off
|
| 58 |
+
FAIRSEQ_LANGUAGE_CODES = {
|
| 59 |
+
"m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"]
|
| 60 |
+
}
|
| 61 |
+
# fmt: on
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class SMALL100Tokenizer(PreTrainedTokenizer):
|
| 65 |
+
"""
|
| 66 |
+
Construct an SMALL100 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
| 67 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
| 68 |
+
this superclass for more information regarding those methods.
|
| 69 |
+
Args:
|
| 70 |
+
vocab_file (`str`):
|
| 71 |
+
Path to the vocabulary file.
|
| 72 |
+
spm_file (`str`):
|
| 73 |
+
Path to [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that
|
| 74 |
+
contains the vocabulary.
|
| 75 |
+
tgt_lang (`str`, *optional*):
|
| 76 |
+
A string representing the target language.
|
| 77 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
| 78 |
+
The end of sequence token.
|
| 79 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
| 80 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
| 81 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
| 82 |
+
token of a sequence built with special tokens.
|
| 83 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
| 84 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
| 85 |
+
token instead.
|
| 86 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
| 87 |
+
The token used for padding, for example when batching sequences of different lengths.
|
| 88 |
+
language_codes (`str`, *optional*):
|
| 89 |
+
What language codes to use. Should be `"m2m100"`.
|
| 90 |
+
sp_model_kwargs (`dict`, *optional*):
|
| 91 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
| 92 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
| 93 |
+
to set:
|
| 94 |
+
- `enable_sampling`: Enable subword regularization.
|
| 95 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
| 96 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
| 97 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
| 98 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
| 99 |
+
using forward-filtering-and-backward-sampling algorithm.
|
| 100 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
| 101 |
+
BPE-dropout.
|
| 102 |
+
Examples:
|
| 103 |
+
```python
|
| 104 |
+
>>> from tokenization_small100 import SMALL100Tokenizer
|
| 105 |
+
>>> tokenizer = SMALL100Tokenizer.from_pretrained("alirezamsh/small100", tgt_lang="ro")
|
| 106 |
+
>>> src_text = " UN Chief Says There Is No Military Solution in Syria"
|
| 107 |
+
>>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"
|
| 108 |
+
>>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
|
| 109 |
+
>>> model(**model_inputs) # should work
|
| 110 |
+
```"""
|
| 111 |
+
|
| 112 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 113 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
| 114 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
| 115 |
+
model_input_names = ["input_ids", "attention_mask"]
|
| 116 |
+
|
| 117 |
+
prefix_tokens: List[int] = []
|
| 118 |
+
suffix_tokens: List[int] = []
|
| 119 |
+
|
| 120 |
+
def __init__(
|
| 121 |
+
self,
|
| 122 |
+
vocab_file,
|
| 123 |
+
spm_file,
|
| 124 |
+
tgt_lang=None,
|
| 125 |
+
bos_token="<s>",
|
| 126 |
+
eos_token="</s>",
|
| 127 |
+
sep_token="</s>",
|
| 128 |
+
pad_token="<pad>",
|
| 129 |
+
unk_token="<unk>",
|
| 130 |
+
language_codes="m2m100",
|
| 131 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
| 132 |
+
num_madeup_words=8,
|
| 133 |
+
**kwargs,
|
| 134 |
+
) -> None:
|
| 135 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
| 136 |
+
|
| 137 |
+
self.language_codes = language_codes
|
| 138 |
+
fairseq_language_code = FAIRSEQ_LANGUAGE_CODES[language_codes]
|
| 139 |
+
self.lang_code_to_token = {lang_code: f"__{lang_code}__" for lang_code in fairseq_language_code}
|
| 140 |
+
|
| 141 |
+
kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", [])
|
| 142 |
+
kwargs["additional_special_tokens"] += [
|
| 143 |
+
self.get_lang_token(lang_code)
|
| 144 |
+
for lang_code in fairseq_language_code
|
| 145 |
+
if self.get_lang_token(lang_code) not in kwargs["additional_special_tokens"]
|
| 146 |
+
]
|
| 147 |
+
|
| 148 |
+
super().__init__(
|
| 149 |
+
tgt_lang=tgt_lang,
|
| 150 |
+
bos_token=bos_token,
|
| 151 |
+
eos_token=eos_token,
|
| 152 |
+
sep_token=sep_token,
|
| 153 |
+
unk_token=unk_token,
|
| 154 |
+
pad_token=pad_token,
|
| 155 |
+
language_codes=language_codes,
|
| 156 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
| 157 |
+
num_madeup_words=num_madeup_words,
|
| 158 |
+
**kwargs,
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
self.vocab_file = vocab_file
|
| 162 |
+
self.encoder = load_json(vocab_file)
|
| 163 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
| 164 |
+
self.spm_file = spm_file
|
| 165 |
+
self.sp_model = load_spm(spm_file, self.sp_model_kwargs)
|
| 166 |
+
|
| 167 |
+
self.encoder_size = len(self.encoder)
|
| 168 |
+
|
| 169 |
+
self.lang_token_to_id = {
|
| 170 |
+
self.get_lang_token(lang_code): self.encoder_size + i for i, lang_code in enumerate(fairseq_language_code)
|
| 171 |
+
}
|
| 172 |
+
self.lang_code_to_id = {lang_code: self.encoder_size + i for i, lang_code in enumerate(fairseq_language_code)}
|
| 173 |
+
self.id_to_lang_token = {v: k for k, v in self.lang_token_to_id.items()}
|
| 174 |
+
|
| 175 |
+
self._tgt_lang = tgt_lang if tgt_lang is not None else "en"
|
| 176 |
+
self.cur_lang_id = self.get_lang_id(self._tgt_lang)
|
| 177 |
+
self.set_lang_special_tokens(self._tgt_lang)
|
| 178 |
+
|
| 179 |
+
self.num_madeup_words = num_madeup_words
|
| 180 |
+
|
| 181 |
+
@property
|
| 182 |
+
def vocab_size(self) -> int:
|
| 183 |
+
return len(self.encoder) + len(self.lang_token_to_id) + self.num_madeup_words
|
| 184 |
+
|
| 185 |
+
@property
|
| 186 |
+
def tgt_lang(self) -> str:
|
| 187 |
+
return self._tgt_lang
|
| 188 |
+
|
| 189 |
+
@tgt_lang.setter
|
| 190 |
+
def tgt_lang(self, new_tgt_lang: str) -> None:
|
| 191 |
+
self._tgt_lang = new_tgt_lang
|
| 192 |
+
self.set_lang_special_tokens(self._tgt_lang)
|
| 193 |
+
|
| 194 |
+
def _tokenize(self, text: str) -> List[str]:
|
| 195 |
+
return self.sp_model.encode(text, out_type=str)
|
| 196 |
+
|
| 197 |
+
def _convert_token_to_id(self, token):
|
| 198 |
+
if token in self.lang_token_to_id:
|
| 199 |
+
return self.lang_token_to_id[token]
|
| 200 |
+
return self.encoder.get(token, self.encoder[self.unk_token])
|
| 201 |
+
|
| 202 |
+
def _convert_id_to_token(self, index: int) -> str:
|
| 203 |
+
"""Converts an index (integer) in a token (str) using the decoder."""
|
| 204 |
+
if index in self.id_to_lang_token:
|
| 205 |
+
return self.id_to_lang_token[index]
|
| 206 |
+
return self.decoder.get(index, self.unk_token)
|
| 207 |
+
|
| 208 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
| 209 |
+
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
|
| 210 |
+
return self.sp_model.decode(tokens)
|
| 211 |
+
|
| 212 |
+
def get_special_tokens_mask(
|
| 213 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
| 214 |
+
) -> List[int]:
|
| 215 |
+
"""
|
| 216 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
| 217 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
| 218 |
+
Args:
|
| 219 |
+
token_ids_0 (`List[int]`):
|
| 220 |
+
List of IDs.
|
| 221 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 222 |
+
Optional second list of IDs for sequence pairs.
|
| 223 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 224 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
| 225 |
+
Returns:
|
| 226 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
| 227 |
+
"""
|
| 228 |
+
|
| 229 |
+
if already_has_special_tokens:
|
| 230 |
+
return super().get_special_tokens_mask(
|
| 231 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
prefix_ones = [1] * len(self.prefix_tokens)
|
| 235 |
+
suffix_ones = [1] * len(self.suffix_tokens)
|
| 236 |
+
if token_ids_1 is None:
|
| 237 |
+
return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones
|
| 238 |
+
return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones
|
| 239 |
+
|
| 240 |
+
def build_inputs_with_special_tokens(
|
| 241 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
| 242 |
+
) -> List[int]:
|
| 243 |
+
"""
|
| 244 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
| 245 |
+
adding special tokens. An MBART sequence has the following format, where `X` represents the sequence:
|
| 246 |
+
- `input_ids` (for encoder) `X [eos, src_lang_code]`
|
| 247 |
+
- `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]`
|
| 248 |
+
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
|
| 249 |
+
separator.
|
| 250 |
+
Args:
|
| 251 |
+
token_ids_0 (`List[int]`):
|
| 252 |
+
List of IDs to which the special tokens will be added.
|
| 253 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 254 |
+
Optional second list of IDs for sequence pairs.
|
| 255 |
+
Returns:
|
| 256 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
| 257 |
+
"""
|
| 258 |
+
if token_ids_1 is None:
|
| 259 |
+
if self.prefix_tokens is None:
|
| 260 |
+
return token_ids_0 + self.suffix_tokens
|
| 261 |
+
else:
|
| 262 |
+
return self.prefix_tokens + token_ids_0 + self.suffix_tokens
|
| 263 |
+
# We don't expect to process pairs, but leave the pair logic for API consistency
|
| 264 |
+
if self.prefix_tokens is None:
|
| 265 |
+
return token_ids_0 + token_ids_1 + self.suffix_tokens
|
| 266 |
+
else:
|
| 267 |
+
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
|
| 268 |
+
|
| 269 |
+
def get_vocab(self) -> Dict:
|
| 270 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
| 271 |
+
vocab.update(self.added_tokens_encoder)
|
| 272 |
+
return vocab
|
| 273 |
+
|
| 274 |
+
def __getstate__(self) -> Dict:
|
| 275 |
+
state = self.__dict__.copy()
|
| 276 |
+
state["sp_model"] = None
|
| 277 |
+
return state
|
| 278 |
+
|
| 279 |
+
def __setstate__(self, d: Dict) -> None:
|
| 280 |
+
self.__dict__ = d
|
| 281 |
+
|
| 282 |
+
# for backward compatibility
|
| 283 |
+
if not hasattr(self, "sp_model_kwargs"):
|
| 284 |
+
self.sp_model_kwargs = {}
|
| 285 |
+
|
| 286 |
+
self.sp_model = load_spm(self.spm_file, self.sp_model_kwargs)
|
| 287 |
+
|
| 288 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 289 |
+
save_dir = Path(save_directory)
|
| 290 |
+
if not save_dir.is_dir():
|
| 291 |
+
raise OSError(f"{save_directory} should be a directory")
|
| 292 |
+
vocab_save_path = save_dir / (
|
| 293 |
+
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"]
|
| 294 |
+
)
|
| 295 |
+
spm_save_path = save_dir / (
|
| 296 |
+
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"]
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
save_json(self.encoder, vocab_save_path)
|
| 300 |
+
|
| 301 |
+
if os.path.abspath(self.spm_file) != os.path.abspath(spm_save_path) and os.path.isfile(self.spm_file):
|
| 302 |
+
copyfile(self.spm_file, spm_save_path)
|
| 303 |
+
elif not os.path.isfile(self.spm_file):
|
| 304 |
+
with open(spm_save_path, "wb") as fi:
|
| 305 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
| 306 |
+
fi.write(content_spiece_model)
|
| 307 |
+
|
| 308 |
+
return (str(vocab_save_path), str(spm_save_path))
|
| 309 |
+
|
| 310 |
+
def prepare_seq2seq_batch(
|
| 311 |
+
self,
|
| 312 |
+
src_texts: List[str],
|
| 313 |
+
tgt_texts: Optional[List[str]] = None,
|
| 314 |
+
tgt_lang: str = "ro",
|
| 315 |
+
**kwargs,
|
| 316 |
+
) -> BatchEncoding:
|
| 317 |
+
self.tgt_lang = tgt_lang
|
| 318 |
+
self.set_lang_special_tokens(self.tgt_lang)
|
| 319 |
+
return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
|
| 320 |
+
|
| 321 |
+
def _build_translation_inputs(self, raw_inputs, tgt_lang: Optional[str], **extra_kwargs):
|
| 322 |
+
"""Used by translation pipeline, to prepare inputs for the generate function"""
|
| 323 |
+
if tgt_lang is None:
|
| 324 |
+
raise ValueError("Translation requires a `tgt_lang` for this model")
|
| 325 |
+
self.tgt_lang = tgt_lang
|
| 326 |
+
inputs = self(raw_inputs, add_special_tokens=True, **extra_kwargs)
|
| 327 |
+
return inputs
|
| 328 |
+
|
| 329 |
+
def _switch_to_input_mode(self):
|
| 330 |
+
self.set_lang_special_tokens(self.tgt_lang)
|
| 331 |
+
|
| 332 |
+
def _switch_to_target_mode(self):
|
| 333 |
+
self.prefix_tokens = None
|
| 334 |
+
self.suffix_tokens = [self.eos_token_id]
|
| 335 |
+
|
| 336 |
+
def set_lang_special_tokens(self, src_lang: str) -> None:
|
| 337 |
+
"""Reset the special tokens to the tgt lang setting. No prefix and suffix=[eos, tgt_lang_code]."""
|
| 338 |
+
lang_token = self.get_lang_token(src_lang)
|
| 339 |
+
self.cur_lang_id = self.lang_token_to_id[lang_token]
|
| 340 |
+
self.prefix_tokens = [self.cur_lang_id]
|
| 341 |
+
self.suffix_tokens = [self.eos_token_id]
|
| 342 |
+
|
| 343 |
+
def get_lang_token(self, lang: str) -> str:
|
| 344 |
+
return self.lang_code_to_token[lang]
|
| 345 |
+
|
| 346 |
+
def get_lang_id(self, lang: str) -> int:
|
| 347 |
+
lang_token = self.get_lang_token(lang)
|
| 348 |
+
return self.lang_token_to_id[lang_token]
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
def load_spm(path: str, sp_model_kwargs: Dict[str, Any]) -> sentencepiece.SentencePieceProcessor:
|
| 352 |
+
spm = sentencepiece.SentencePieceProcessor(**sp_model_kwargs)
|
| 353 |
+
spm.Load(str(path))
|
| 354 |
+
return spm
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
def load_json(path: str) -> Union[Dict, List]:
|
| 358 |
+
with open(path, "r") as f:
|
| 359 |
+
return json.load(f)
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
def save_json(data, path: str) -> None:
|
| 363 |
+
with open(path, "w") as f:
|
| 364 |
+
json.dump(data, f, indent=2)
|