Spaces:
Build error
Build error
| import os | |
| import streamlit as st | |
| from dotenv import load_dotenv | |
| from PyPDF2 import PdfReader | |
| from langchain.text_splitter import CharacterTextSplitter | |
| from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings | |
| from langchain.vectorstores import FAISS | |
| from langchain.chat_models import ChatOpenAI | |
| from langchain.memory import ConversationBufferMemory | |
| from langchain.chains import ConversationalRetrievalChain | |
| from langchain.chat_models.gigachat import GigaChat | |
| from htmlTemplates import css, bot_template, user_template | |
| from langchain.llms import HuggingFaceHub, LlamaCpp | |
| from huggingface_hub import snapshot_download, hf_hub_download | |
| # If you want to use gguf model, uncomment 18-19&21 and 54-62 lines, comment-out 64-65. Otherwise provide GigaChat Credentials through HF secrets menu | |
| #repo_name = "IlyaGusev/saiga_mistral_7b_gguf" | |
| #model_name = "model-q4_K.gguf" | |
| #snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_name) | |
| def get_pdf_text(pdf_docs): | |
| text = "" | |
| for pdf in pdf_docs: | |
| pdf_reader = PdfReader(pdf) | |
| for page in pdf_reader.pages: | |
| text += page.extract_text() | |
| return text | |
| def get_text_chunks(text): | |
| text_splitter = CharacterTextSplitter(separator="\n", | |
| chunk_size=1000, | |
| chunk_overlap=200, | |
| length_function=len | |
| ) | |
| chunks = text_splitter.split_text(text) | |
| return chunks | |
| def get_vectorstore(text_chunks): | |
| embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-large") | |
| vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
| return vectorstore | |
| def get_conversation_chain(vectorstore, model_name): | |
| # llm = LlamaCpp(model_path=model_name, | |
| # temperature=0.1, | |
| # top_k=30, | |
| # top_p=0.9, | |
| # streaming=True, | |
| # n_ctx=2048, | |
| # n_parts=1, | |
| # echo=True | |
| # ) | |
| llm = GigaChat(credentials=os.getenv("GIGACHAT_CREDENTIALS"), | |
| verify_ssl_certs=False) | |
| memory = ConversationBufferMemory(memory_key='chat_history', | |
| input_key='question', | |
| output_key='answer', | |
| return_messages=True) | |
| conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm, | |
| retriever=vectorstore.as_retriever(), | |
| memory=memory, | |
| return_source_documents=True | |
| ) | |
| return conversation_chain | |
| def handle_userinput(user_question): | |
| if user_question == None: | |
| user_question = "привет" | |
| response = st.session_state.conversation({'question': user_question}) | |
| st.session_state.chat_history = response['chat_history'] | |
| st.session_state.retrieved_text = response['source_documents'] | |
| for i, (message, text) in enumerate(zip(st.session_state.chat_history, st.session_state.retrieved_text)): | |
| if i % 3 == 0: | |
| st.write(user_template.replace( | |
| "{{MSG}}", message.content), unsafe_allow_html=True) | |
| else: | |
| st.write(bot_template.replace( | |
| "{{MSG}}", message.content), unsafe_allow_html=True) | |
| print(text) | |
| st.write(bot_template.replace( | |
| "{{MSG}}", str(text.page_content)), unsafe_allow_html=True) | |
| # main code | |
| load_dotenv() | |
| st.set_page_config(page_title="Chat with multiple PDFs", | |
| page_icon=":books:") | |
| st.write(css, unsafe_allow_html=True) | |
| if "conversation" not in st.session_state: | |
| st.session_state.conversation = None | |
| if "chat_history" not in st.session_state: | |
| st.session_state.chat_history = None | |
| st.header("Chat with multiple PDFs :books:") | |
| user_question = st.text_input("Ask a question about your documents: ") | |
| if user_question: | |
| handle_userinput(user_question) | |
| with st.sidebar: | |
| st.subheader("Your documents") | |
| pdf_docs = st.file_uploader( | |
| "Upload your PDFs here and click on 'Process'", accept_multiple_files=True) | |
| if st.button("Process"): | |
| with st.spinner("Processing"): | |
| # get pdf text | |
| raw_text = get_pdf_text(pdf_docs) | |
| # get the text chunks | |
| text_chunks = get_text_chunks(raw_text) | |
| # create vector store | |
| vectorstore = get_vectorstore(text_chunks) | |
| # create conversation chain | |
| st.session_state.conversation = get_conversation_chain(vectorstore, model_name) | |