sukhmani1303 commited on
Commit
84d195f
·
verified ·
1 Parent(s): d9b124c

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +82 -6
README.md CHANGED
@@ -1,10 +1,86 @@
 
1
  ---
2
- title: Store Sales Ts Forecasting
3
- emoji:
4
- colorFrom: indigo
5
- colorTo: pink
6
  sdk: docker
 
 
7
  pinned: false
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  ---
9
-
10
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
  ---
3
+ title: Store Sales Time Series Forecasting
4
+ emoji: 📈
5
+ colorFrom: blue
6
+ colorTo: green
7
  sdk: docker
8
+ sdk_version: 1
9
+ app_file: app.py
10
  pinned: false
11
+ short_description: Forecast store sales over 13 weeks using LSTM
12
+ license: mit
13
+ tags:
14
+ - time-series
15
+ - forecasting
16
+ - lstm
17
+ - retail
18
+ - pytorch
19
+ library_name: pytorch
20
+ model-index:
21
+ - name: ImprovedCashFlowLSTM
22
+ results:
23
+ - task:
24
+ type: time-series-forecasting
25
+ dataset:
26
+ name: Kaggle Store Sales
27
+ type: store-sales-time-series-forecasting
28
+ metrics:
29
+ - name: MAE
30
+ type: mae
31
+ value: 710.75
32
+ - name: RMSE
33
+ type: rmse
34
+ value: 1108.51
35
+ - name: MAPE
36
+ type: mape
37
+ value: 7.14
38
+ - name: R2
39
+ type: r2
40
+ value: 0.8633
41
  ---
42
+ # Store Sales Forecasting Model
43
+ ## Model Overview
44
+ This is an Improved Cash Flow LSTM model for forecasting store sales over a 13-week horizon, trained on the Kaggle Store Sales dataset.
45
+ ## Model Architecture
46
+ - **Type**: LSTM
47
+ - **Input Size**: 20
48
+ - **Hidden Size**: 128
49
+ - **Number of Layers**: 2
50
+ - **Dropout**: 0.2
51
+ - **Forecast Horizon**: 13 weeks
52
+ - **Parameters**: 227,085
53
+ ## Features Used
54
+ sales, onpromotion, trend, dayofweek_sin, dayofweek_cos, month_sin, month_cos, is_weekend, quarter, sales_lag_1, sales_lag_7, sales_lag_14, sales_ma_7, sales_ma_14, sales_ratio_7, sales_ratio_14, promo_lag_1, promo_running_sum, dcoilwtico, is_holiday
55
+ ## Performance Metrics
56
+ - **MAE**: $710.75
57
+ - **RMSE**: $1108.51
58
+ - **MAPE**: 7.14%
59
+ - **R² Score**: 0.8633
60
+ ## Usage
61
+ 1. Install dependencies: `pip install -r requirements.txt`
62
+ 2. Use `inference.py` to load the model and make predictions.
63
+ 3. Input data must have 21 timesteps and match the feature set, scaled using `scaler.pkl`.
64
+ ### Example
65
+ ```python
66
+ import numpy as np
67
+ from inference import load_model_and_artifacts, forecast
68
+ model, scaler, feature_names = load_model_and_artifacts()
69
+ sequences = np.random.random((1, 21, len(feature_names))) # Replace with actual data
70
+ predictions, uncertainties = forecast(model, scaler, sequences)
71
+ print("Predictions:", predictions)
72
+ ```
73
+ ## Training Details
74
+ - **Dataset**: Kaggle Store Sales Time Series Forecasting
75
+ - **Data Shape**: (8250, 20)
76
+ - **Sequences**: 8217, length 21
77
+ - **Preprocessing**: StandardScaler, conservative outlier removal
78
+ - **Epochs**: 107 (early stopping)
79
+ - **Optimizer**: Adam with ReduceLROnPlateau
80
+ - **Loss**: MSE
81
+ ## Limitations
82
+ - Predictions are sensitive to input data quality.
83
+ - Model assumes consistent feature scaling.
84
+ - Performance may degrade on sparse or outlier-heavy data.
85
+ ## License
86
+ MIT License