Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
|
| 2 |
---
|
| 3 |
title: Store Sales Time Series Forecasting
|
| 4 |
emoji: 📈
|
|
@@ -31,56 +30,62 @@ model-index:
|
|
| 31 |
value: 710.75
|
| 32 |
- name: RMSE
|
| 33 |
type: rmse
|
| 34 |
-
value: 1108.
|
| 35 |
- name: MAPE
|
| 36 |
type: mape
|
| 37 |
-
value: 7.
|
| 38 |
- name: R2
|
| 39 |
type: r2
|
| 40 |
value: 0.8633
|
| 41 |
---
|
| 42 |
-
# Store Sales Forecasting
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
| 45 |
## Model Architecture
|
| 46 |
- **Type**: LSTM
|
| 47 |
-
- **Input Size**: 20
|
| 48 |
- **Hidden Size**: 128
|
| 49 |
- **Number of Layers**: 2
|
| 50 |
- **Dropout**: 0.2
|
| 51 |
- **Forecast Horizon**: 13 weeks
|
| 52 |
-
- **Parameters**: 227,
|
| 53 |
-
|
| 54 |
-
|
| 55 |
## Performance Metrics
|
| 56 |
- **MAE**: $710.75
|
| 57 |
-
- **RMSE**: $1108.
|
| 58 |
-
- **MAPE**: 7.
|
| 59 |
- **R² Score**: 0.8633
|
|
|
|
| 60 |
## Usage
|
| 61 |
-
1.
|
| 62 |
-
2.
|
| 63 |
-
3.
|
|
|
|
| 64 |
### Example
|
| 65 |
```python
|
| 66 |
-
import
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
predictions, uncertainties = forecast(model, scaler, sequences)
|
| 71 |
print("Predictions:", predictions)
|
| 72 |
```
|
|
|
|
| 73 |
## Training Details
|
| 74 |
- **Dataset**: Kaggle Store Sales Time Series Forecasting
|
| 75 |
- **Data Shape**: (8250, 20)
|
| 76 |
- **Sequences**: 8217, length 21
|
| 77 |
- **Preprocessing**: StandardScaler, conservative outlier removal
|
| 78 |
-
- **Epochs**:
|
| 79 |
- **Optimizer**: Adam with ReduceLROnPlateau
|
| 80 |
- **Loss**: MSE
|
|
|
|
| 81 |
## Limitations
|
| 82 |
-
- Predictions are sensitive to input data quality.
|
| 83 |
-
-
|
| 84 |
-
-
|
|
|
|
| 85 |
## License
|
| 86 |
-
MIT License
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
title: Store Sales Time Series Forecasting
|
| 3 |
emoji: 📈
|
|
|
|
| 30 |
value: 710.75
|
| 31 |
- name: RMSE
|
| 32 |
type: rmse
|
| 33 |
+
value: 1108.36
|
| 34 |
- name: MAPE
|
| 35 |
type: mape
|
| 36 |
+
value: 7.16
|
| 37 |
- name: R2
|
| 38 |
type: r2
|
| 39 |
value: 0.8633
|
| 40 |
---
|
| 41 |
+
# Store Sales Time Series Forecasting
|
| 42 |
+
|
| 43 |
+
## Overview
|
| 44 |
+
This Hugging Face Space hosts an LSTM-based model (`ImprovedCashFlowLSTM`) for forecasting store sales over a 13-week horizon, trained on the Kaggle Store Sales Time Series Forecasting dataset.
|
| 45 |
+
|
| 46 |
## Model Architecture
|
| 47 |
- **Type**: LSTM
|
| 48 |
+
- **Input Size**: 20 features
|
| 49 |
- **Hidden Size**: 128
|
| 50 |
- **Number of Layers**: 2
|
| 51 |
- **Dropout**: 0.2
|
| 52 |
- **Forecast Horizon**: 13 weeks
|
| 53 |
+
- **Parameters**: 227,441
|
| 54 |
+
- **Features**: sales, onpromotion, trend, dayofweek_sin, dayofweek_cos, month_sin, month_cos, is_weekend, quarter, sales_lag_1, sales_lag_7, sales_lag_14, sales_ma_7, sales_ma_14, sales_ratio_7, sales_ratio_14, promo_lag_1, promo_running_sum, dcoilwtico, is_holiday
|
| 55 |
+
|
| 56 |
## Performance Metrics
|
| 57 |
- **MAE**: $710.75
|
| 58 |
+
- **RMSE**: $1108.36
|
| 59 |
+
- **MAPE**: 7.16%
|
| 60 |
- **R² Score**: 0.8633
|
| 61 |
+
|
| 62 |
## Usage
|
| 63 |
+
1. **Synthetic Data**: Click "Generate Synthetic Data" to create a 21-timestep sample dataset (sales ~$3,000–19,000) and view a 13-week forecast.
|
| 64 |
+
2. **Custom Data**: Upload a CSV with 21 timesteps and 20 features matching the above feature names.
|
| 65 |
+
3. **Output**: View forecasts in a table and Plotly graph with uncertainty bands.
|
| 66 |
+
|
| 67 |
### Example
|
| 68 |
```python
|
| 69 |
+
from inference import load_model_and_artifacts, predict
|
| 70 |
+
model, scaler, feature_names, config = load_model_and_artifacts()
|
| 71 |
+
sequences = scaler.transform(your_data[feature_names].values).reshape(1, 21, 20)
|
| 72 |
+
predictions, uncertainties = predict(model, scaler, sequences)
|
|
|
|
| 73 |
print("Predictions:", predictions)
|
| 74 |
```
|
| 75 |
+
|
| 76 |
## Training Details
|
| 77 |
- **Dataset**: Kaggle Store Sales Time Series Forecasting
|
| 78 |
- **Data Shape**: (8250, 20)
|
| 79 |
- **Sequences**: 8217, length 21
|
| 80 |
- **Preprocessing**: StandardScaler, conservative outlier removal
|
| 81 |
+
- **Epochs**: 70 (early stopping)
|
| 82 |
- **Optimizer**: Adam with ReduceLROnPlateau
|
| 83 |
- **Loss**: MSE
|
| 84 |
+
|
| 85 |
## Limitations
|
| 86 |
+
- Predictions are sensitive to input data quality and scaling.
|
| 87 |
+
- Performance may degrade on low-sales stores (<$3,000) not included in training.
|
| 88 |
+
- Assumes consistent feature engineering as in training.
|
| 89 |
+
|
| 90 |
## License
|
| 91 |
+
MIT License
|