File size: 8,798 Bytes
d49ff4a
 
 
 
 
8dda8f7
 
 
d49ff4a
 
 
8dda8f7
d49ff4a
8dda8f7
d49ff4a
 
8dda8f7
d49ff4a
 
 
 
8dda8f7
 
d49ff4a
8dda8f7
d49ff4a
1681fa8
8dda8f7
d49ff4a
 
 
 
 
 
 
 
 
8dda8f7
 
d49ff4a
 
8dda8f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d49ff4a
 
8dda8f7
 
 
d49ff4a
 
 
 
8dda8f7
 
d49ff4a
 
8dda8f7
d49ff4a
 
1681fa8
8dda8f7
1681fa8
8dda8f7
d49ff4a
 
 
 
 
 
 
1681fa8
 
8dda8f7
 
1681fa8
 
 
d49ff4a
1681fa8
 
 
d49ff4a
 
 
 
 
 
8dda8f7
 
d49ff4a
 
 
1681fa8
8dda8f7
 
d49ff4a
8dda8f7
 
 
 
 
d49ff4a
8dda8f7
d49ff4a
8dda8f7
d49ff4a
8dda8f7
d49ff4a
 
8dda8f7
 
d49ff4a
8dda8f7
 
 
d49ff4a
8dda8f7
d49ff4a
8dda8f7
d49ff4a
 
 
 
 
8dda8f7
 
d49ff4a
8dda8f7
 
d49ff4a
8dda8f7
 
1681fa8
d49ff4a
 
8dda8f7
 
1681fa8
 
d49ff4a
 
 
 
 
8dda8f7
 
 
d49ff4a
 
 
 
 
 
8dda8f7
 
 
 
 
 
d49ff4a
 
 
 
 
8dda8f7
 
 
 
 
d49ff4a
8dda8f7
 
1681fa8
d49ff4a
 
8dda8f7
 
1681fa8
 
d49ff4a
 
 
8dda8f7
d49ff4a
8dda8f7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
from datetime import datetime, timedelta
from io import StringIO
import os
import json

# Debug: Verify file paths
st.write("Debug: Checking file paths...")
files_to_check = ["new_best_improved_model.pth", "scaler.pkl", "feature_names.json", "model_config.json"]
for file in files_to_check:
    st.write(f"{file}: {'Found' if os.path.exists(file) else 'Missing'}")

try:
    from inference import load_model_and_artifacts, predict
except Exception as e:
    st.error(f"Error importing inference: {str(e)}")
    st.stop()

st.title("Store Sales Time Series Forecasting")
st.markdown("Forecast 13-week store sales using an LSTM model trained on Kaggle Store Sales data.")

# Load model and artifacts
try:
    st.write("Debug: Loading model and artifacts...")
    model, scaler, feature_names, config = load_model_and_artifacts()
    st.success("Model and artifacts loaded successfully")
except Exception as e:
    st.error(f"Error loading model or artifacts: {str(e)}")
    st.stop()

# Display model metrics
st.header("Model Performance Metrics")
metrics = {
    "MAE": 710.75,
    "RMSE": 1108.36,
    "MAPE": 7.16,
    "R2": 0.8633
}
st.markdown(f"""
- **MAE**: ${metrics['MAE']:.2f}  
- **RMSE**: ${metrics['RMSE']:.2f}  
- **MAPE**: {metrics['MAPE']:.2f}%  
- **R² Score**: {metrics['R2']:.4f}
""")

# Model architecture summary
st.header("Model Architecture")
st.markdown(f"""
- **Input Size**: {config['input_size']} features  
- **Hidden Size**: {config['hidden_size']}  
- **Number of Layers**: {config['num_layers']}  
- **Forecast Horizon**: {config['forecast_horizon']} weeks  
- **Dropout**: {config['dropout']}  
- **Attention**: {config['has_attention']}  
- **Input Projection**: {config['has_input_projection']}  
- **Parameters**: 227,441
""")

# Synthetic data generation
st.header("Generate Synthetic Test Data")
st.markdown("Create a sample dataset with 21 timesteps matching the training data distribution (sales ~$3,000–19,000).")
if st.button("Generate Synthetic Data"):
    np.random.seed(42)
    sequence_length = 21
    n_features = len(feature_names)
    synthetic_data = np.zeros((sequence_length, n_features))
    
    # Generate features based on training data characteristics
    for i, feature in enumerate(feature_names):
        if feature == "sales":
            synthetic_data[:, i] = np.random.normal(8954.97, 3307.49, sequence_length)  # Mean, std from verbose
        elif feature == "onpromotion":
            synthetic_data[:, i] = np.random.choice([0, 1], sequence_length, p=[0.8, 0.2])
        elif feature in ["dayofweek_sin", "dayofweek_cos"]:
            synthetic_data[:, i] = np.sin(np.linspace(0, 2 * np.pi, sequence_length)) if "sin" in feature else np.cos(np.linspace(0, 2 * np.pi, sequence_length))
        elif feature in ["month_sin", "month_cos"]:
            synthetic_data[:, i] = np.sin(np.linspace(0, 2 * np.pi * 12 / sequence_length, sequence_length)) if "sin" in feature else np.cos(np.linspace(0, 2 * np.pi * 12 / sequence_length, sequence_length))
        elif feature == "trend":
            synthetic_data[:, i] = np.linspace(0, sequence_length, sequence_length)
        elif feature == "is_weekend":
            synthetic_data[:, i] = np.random.choice([0, 1], sequence_length, p=[0.7, 0.3])
        elif feature == "quarter":
            synthetic_data[:, i] = np.random.choice([1, 2, 3, 4], sequence_length)
        elif "lag" in feature:
            lag = int(feature.split('_')[-1])
            synthetic_data[:, i] = np.roll(synthetic_data[:, 0], lag)
            if lag > 0:
                synthetic_data[:lag, i] = synthetic_data[:lag, 0]
        elif "ma" in feature:
            window = int(feature.split('_')[-1])
            synthetic_data[:, i] = pd.Series(synthetic_data[:, 0]).rolling(window=window, min_periods=1).mean().values
        elif "ratio" in feature:
            window = int(feature.split('_')[-1])
            ma = pd.Series(synthetic_data[:, 0]).rolling(window=window, min_periods=1).mean().values
            synthetic_data[:, i] = synthetic_data[:, 0] / (ma + 1e-8)
        elif "promo" in feature:
            synthetic_data[:, i] = np.random.choice([0, 1], sequence_length, p=[0.8, 0.2])
        elif feature == "dcoilwtico":
            synthetic_data[:, i] = np.random.normal(80, 10, sequence_length)
        elif feature == "is_holiday":
            synthetic_data[:, i] = np.random.choice([0, 1], sequence_length, p=[0.9, 0.1])
    
    # Create DataFrame with dates
    synthetic_df = pd.DataFrame(synthetic_data, columns=feature_names)
    end_date = datetime.now().date()
    dates = [end_date - timedelta(days=x) for x in range(sequence_length-1, -1, -1)]
    synthetic_df['Date'] = dates
    
    # Store in session state
    st.session_state["synthetic_df"] = synthetic_df
    
    st.subheader("Synthetic Data Preview")
    st.dataframe(synthetic_df.head())
    
    # Download synthetic data
    csv_buffer = StringIO()
    synthetic_df.to_csv(csv_buffer, index=False)
    st.download_button(
        label="Download Synthetic Data CSV",
        data=csv_buffer.getvalue(),
        file_name="synthetic_sales_data.csv",
        mime="text/csv"
    )
    
    # Generate forecast
    try:
        sequences = synthetic_df[feature_names].values.reshape(1, sequence_length, n_features)
        sequences_scaled = scaler.transform(sequences.reshape(-1, n_features)).reshape(1, sequence_length, n_features)
        predictions, uncertainties = predict(model, scaler, sequences_scaled)
        
        # Create forecast DataFrame
        forecast_dates = [end_date + timedelta(days=x*7) for x in range(1, 14)]
        forecast_df = pd.DataFrame({
            'Date': forecast_dates,
            'Predicted Sales ($)': predictions[0],
            'Uncertainty ($)': uncertainties[0]
        })
        
        st.subheader("13-Week Forecast")
        st.dataframe(forecast_df)
        
        # Plot forecast
        fig = px.line(forecast_df, x='Date', y='Predicted Sales ($)', title='13-Week Sales Forecast')
        fig.add_scatter(
            x=forecast_df['Date'],
            y=forecast_df['Predicted Sales ($)'] + forecast_df['Uncertainty ($)'],
            mode='lines', name='Upper Bound', line=dict(dash='dash', color='green')
        )
        fig.add_scatter(
            x=forecast_df['Date'],
            y=forecast_df['Predicted Sales ($)'] - forecast_df['Uncertainty ($)'],
            mode='lines', name='Lower Bound', line=dict(dash='dash', color='green'),
            fill='tonexty', fillcolor='rgba(0, 255, 0, 0.1)'
        )
        st.plotly_chart(fig)
    except Exception as e:
        st.error(f"Error generating forecast: {str(e)}")

# CSV upload for custom predictions
st.header("Upload Custom Data")
st.markdown("Upload a CSV with 21 timesteps and 20 features matching the feature names and format of the synthetic data.")
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")

if uploaded_file is not None:
    try:
        data = pd.read_csv(uploaded_file)
        if set(feature_names).issubset(data.columns) and len(data) == 21:
            sequences = data[feature_names].values.reshape(1, 21, len(feature_names))
            sequences_scaled = scaler.transform(sequences.reshape(-1, len(feature_names))).reshape(1, 21, len(feature_names))
            predictions, uncertainties = predict(model, scaler, sequences_scaled)
            
            # Create forecast DataFrame
            forecast_df = pd.DataFrame({
                'Week': range(1, 14),
                'Predicted Sales ($)': predictions[0],
                'Uncertainty ($)': uncertainties[0]
            })
            
            st.subheader("13-Week Forecast")
            st.dataframe(forecast_df)
            
            # Plot forecast
            fig = px.line(forecast_df, x='Week', y='Predicted Sales ($)', title='13-Week Sales Forecast')
            fig.add_scatter(
                x=forecast_df['Week'],
                y=forecast_df['Predicted Sales ($)'] + forecast_df['Uncertainty ($)'],
                mode='lines', name='Upper Bound', line=dict(dash='dash', color='green')
            )
            fig.add_scatter(
                x=forecast_df['Week'],
                y=forecast_df['Predicted Sales ($)'] - forecast_df['Uncertainty ($)'],
                mode='lines', name='Lower Bound', line=dict(dash='dash', color='green'),
                fill='tonexty', fillcolor='rgba(0, 255, 0, 0.1)'
            )
            st.plotly_chart(fig)
        else:
            st.error(f"Invalid CSV. Expected 21 rows and columns including: {', '.join(feature_names)}")
    except Exception as e:
        st.error(f"Error processing CSV or generating forecast: {str(e)}")