sma1-rmarud
try to upload multiple img
fd529c3
#!/usr/bin/env python
# coding: utf-8
import torch
from PIL import Image
import re
import base64
import gradio as gr
from transformers import DonutProcessor, VisionEncoderDecoderModel
# Task prompt and model path
task_prompt = f"<s_cord-v2>" # decoder ์งˆ๋ฌธ. ํŒŒ์‹ฑํ•ด๋ผ.๋ผ๋Š” ์˜๋ฏธ.
pretrained_path = "sma1-rmarud/donut-cord-v2-menu-sample-demo"
# Load pretrained processor and model
processor = DonutProcessor.from_pretrained(pretrained_path)
pretrained_model = VisionEncoderDecoderModel.from_pretrained(pretrained_path)
device = torch.device("cpu") # CPU ์‚ฌ์šฉ
pretrained_model.to(device)
pretrained_model = pretrained_model.float()
pretrained_model.eval()
# Function to convert tokenized output to JSON format
def token2json(tokens, is_inner_value=False):
output = dict()
while tokens:
start_token = re.search(r"<s_(.*?)>", tokens, re.IGNORECASE)
if start_token is None:
break
key = start_token.group(1)
end_token = re.search(fr"</s_{key}>", tokens, re.IGNORECASE)
start_token = start_token.group()
if end_token is None:
tokens = tokens.replace(start_token, "")
else:
end_token = end_token.group()
start_token_escaped = re.escape(start_token)
end_token_escaped = re.escape(end_token)
content = re.search(f"{start_token_escaped}(.*?){end_token_escaped}", tokens, re.IGNORECASE)
if content is not None:
content = content.group(1).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
value = token2json(content, is_inner_value=True)
if value:
if len(value) == 1:
value = value[0]
output[key] = value
else: # leaf nodes
output[key] = []
for leaf in content.split(r"<sep/>"):
leaf = leaf.strip()
output[key].append(leaf)
if len(output[key]) == 1:
output[key] = output[key][0]
tokens = tokens[tokens.find(end_token) + len(end_token):].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + token2json(tokens[6:], is_inner_value=True)
if len(output):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
# Gradio demo process function
def demo_process(files):
global pretrained_model, task_prompt, device
results = []
for file in files:
input_img = Image.open(file).convert("RGB")
input_img = input_img.resize((960, 640))
pixel_values = processor(input_img, return_tensors="pt", padding=True).pixel_values.to(device)
pixel_values = pixel_values.float()
decoder_input_ids = torch.full((1, 1), pretrained_model.config.decoder_start_token_id, device=device)
outputs = pretrained_model.generate(pixel_values,
decoder_input_ids=decoder_input_ids,
max_length=pretrained_model.config.decoder.max_length,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,)
predictions = []
for seq in processor.tokenizer.batch_decode(outputs.sequences):
seq = seq.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
seq = re.sub(r"<.*?>", "", seq, count=1).strip()
predictions.append(seq)
results.append(token2json(predictions[0]))
return results
# Base64 encode the SVG background
sprinkle_svg = """
<svg id="sprinkle-pattern" xmlns="http://www.w3.org/2000/svg" width="500" height="500">
<defs>
<pattern id="sprinkles" x="0" y="0" width="40" height="40" patternUnits="userSpaceOnUse">
<rect x="10" y="10" width="10" height="3" rx="1.5" transform="rotate(45, 15, 11.5)" fill="#FF5252"/>
<rect x="20" y="20" width="10" height="3" rx="1.5" transform="rotate(-30, 25, 21.5)" fill="#FFD740"/>
<rect x="30" y="30" width="10" height="3" rx="1.5" transform="rotate(60, 35, 31.5)" fill="#40C4FF"/>
<rect x="10" y="30" width="10" height="3" rx="1.5" transform="rotate(10, 15, 31.5)" fill="#69F0AE"/>
<rect x="50" y="10" width="10" height="3" rx="1.5" transform="rotate(120, 55, 11.5)" fill="#EA80FC"/>
</pattern>
</defs>
<rect width="100%" height="100%" fill="#FFFFFF"/>
<rect width="100%" height="100%" fill="url(#sprinkles)" opacity="0.6"/>
</svg>
"""
encoded_svg = base64.b64encode(sprinkle_svg.encode('utf-8')).decode('ascii')
background_url = f"data:image/svg+xml;base64,{encoded_svg}"
# Gradio Interface
demo = gr.Interface(
fn=demo_process,
inputs=gr.File(file_types=["image"], label="Upload multiple images", file_count="multiple"),
outputs=gr.JSON(), # json list output
description="<div class='white-title'>Donut ๐Ÿฉ Demonstration</div>", # Title for demo
theme="soft",
css=f"""
.gradio-container {{
background-color: #ffffff;
background-image: url('{background_url}');
background-size: cover;
background-repeat: no-repeat;
background-position: center;
}}
.white-title {{
background: #fff;
color: #333;
font-weight: bold;
font-size: 2rem;
padding: 1rem 2rem;
border-radius: 12px;
text-align: center;
margin-bottom: 24px;
box-shadow: 0 2px 8px rgba(0,0,0,0.08);
border: 1px solid #eee;
}}
""",
)
demo.launch(debug=True)