Spaces:
Sleeping
Sleeping
test
Browse files- .gitattributes +1 -0
- app.py +7 -3
- embeddings.json +3 -0
.gitattributes
CHANGED
|
@@ -32,4 +32,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 32 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 32 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*.json filter=lfs diff=lfs merge=lfs -text
|
| 36 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
|
@@ -21,8 +21,8 @@ def decrypt_file(input_path, key):
|
|
| 21 |
|
| 22 |
llm = llama_cpp.Llama.from_pretrained(repo_id="mradermacher/bge-large-zh-v1.5-GGUF", filename="bge-large-zh-v1.5.Q4_K_M.gguf", embedding=True)
|
| 23 |
|
| 24 |
-
embedding_1 = llm.create_embedding("Hello, world!")
|
| 25 |
-
embedding_2 = llm.create_embedding("你好, 世界!") # type(embedding_1['data'][0]['embedding']) list
|
| 26 |
|
| 27 |
from pymilvus import MilvusClient
|
| 28 |
client = MilvusClient("./books.db")
|
|
@@ -40,6 +40,10 @@ raw_jsons = json.loads(decrypted_content)
|
|
| 40 |
docs = []
|
| 41 |
metas = []
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
for vhjx_index, vhjx_item in enumerate(raw_jsons):
|
| 44 |
chapter = vhjx_item[0]
|
| 45 |
for jvvi_item in vhjx_item[1:]:
|
|
@@ -56,7 +60,7 @@ for vhjx_index, vhjx_item in enumerate(raw_jsons):
|
|
| 56 |
# 一个章节一次
|
| 57 |
# 批量生成 embeddings(每个为 list[float])
|
| 58 |
emb_result = llm.create_embedding(docs)
|
| 59 |
-
embeddings = [
|
| 60 |
|
| 61 |
# 准备数据
|
| 62 |
milvus_data = []
|
|
|
|
| 21 |
|
| 22 |
llm = llama_cpp.Llama.from_pretrained(repo_id="mradermacher/bge-large-zh-v1.5-GGUF", filename="bge-large-zh-v1.5.Q4_K_M.gguf", embedding=True)
|
| 23 |
|
| 24 |
+
# embedding_1 = llm.create_embedding("Hello, world!")
|
| 25 |
+
# embedding_2 = llm.create_embedding("你好, 世界!") # type(embedding_1['data'][0]['embedding']) list
|
| 26 |
|
| 27 |
from pymilvus import MilvusClient
|
| 28 |
client = MilvusClient("./books.db")
|
|
|
|
| 40 |
docs = []
|
| 41 |
metas = []
|
| 42 |
|
| 43 |
+
with open('embeddings.json', mode='w+') as embedding_file:
|
| 44 |
+
all_embs = json.load(embedding_file)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
for vhjx_index, vhjx_item in enumerate(raw_jsons):
|
| 48 |
chapter = vhjx_item[0]
|
| 49 |
for jvvi_item in vhjx_item[1:]:
|
|
|
|
| 60 |
# 一个章节一次
|
| 61 |
# 批量生成 embeddings(每个为 list[float])
|
| 62 |
emb_result = llm.create_embedding(docs)
|
| 63 |
+
embeddings = all_embs[vhjx_index] # List[List[float]]
|
| 64 |
|
| 65 |
# 准备数据
|
| 66 |
milvus_data = []
|
embeddings.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8bfd6c4db5126d998144279518e6f0d134c7c84cbe07d5a8531711a1ec949602
|
| 3 |
+
size 119355981
|