urgency_classifier_space / response_schema.py
mr-kush's picture
Add missing import for Dict in response schema
f7e75a5
from pydantic import BaseModel, Field, field_validator, model_validator
from typing import Union, List, Annotated, Dict
import re
def clean_text(text: str) -> str:
text = re.sub(r'https?://\S+|www\.\S+', '', text)
text = re.sub(r'<.*?>', '', text)
text = re.sub(r'\n', ' ', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
class TextInput(BaseModel):
text: Annotated[
Union[str, List[str]],
Field(..., title="Input text(s)", description="Single string or list of strings")
]
@field_validator("text")
def validate_text(cls, value):
if isinstance(value, str):
value = value.strip()
if not value:
raise ValueError("String input cannot be empty.")
elif isinstance(value, list):
if not value:
raise ValueError("List input cannot be empty.")
for i, v in enumerate(value):
if not isinstance(v, str) or not v.strip():
raise ValueError(f"Item {i} in list is not a valid non-empty string.")
else:
raise TypeError("Input must be a string or a list of strings.")
return value
# Correct model validator for Pydantic v2
@model_validator(mode="after")
def clean_text_after(model):
if isinstance(model.text, str):
model.text = clean_text(model.text)
else:
model.text = [clean_text(t) for t in model.text]
return model
model_config = {
"json_schema_extra": {
"examples": [
{"text": "Where can I get a new water connection?"},
{"text": ["Where can I get a new water connection?", "My streetlight is broken."]}
]
}
}
# Response schema
class UrgencyClassificationOutput(BaseModel):
label: str = Field(..., description="Top predicted urgency label")
confidence: float = Field(..., ge=0, le=1, description="Confidence score for top label")
scores: Dict[str, float] = Field(..., description="All label confidence scores")