Spaces:
Paused
Paused
File size: 11,165 Bytes
567a369 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import re
import pandas as pd
from datasets import Dataset, DatasetDict
from sklearn.model_selection import train_test_split
from huggingface_hub import HfApi, create_repo
from datetime import datetime, UTC
import os
import json
# Label Mappings
department2id = {
'Municipal Governance & Community Services': 0,
'Education, Health & Social Welfare': 1,
'Infrastructure, Utilities & Natural Resources': 2,
'Security & Law Enforcement': 3
}
id2department = {v: k for k, v in department2id.items()}
urgency2id = {'NORMAL': 0, 'URGENT': 1, 'HIGHLY URGENT': 2}
id2urgency = {v: k for k, v in urgency2id.items()}
# Text Cleaning Function
def clean_text(text: str) -> str:
"""Clean grievance text by removing URLs, HTML tags, extra whitespace."""
text = re.sub(r'https?://\S+|www\.\S+', '', text) # Remove URLs
text = re.sub(r'<.*?>', '', text) # Remove HTML tags
text = re.sub(r'\n', ' ', text) # Replace newlines with space
text = re.sub(r'\s+', ' ', text).strip() # Reduce multiple spaces
return text
# Dataset Cleaning & Encoding
def clean_and_encode_dataset(df: pd.DataFrame, label_column: str = 'department') -> pd.DataFrame:
"""
Clean the text and encode the label.
Args:
df: pandas DataFrame with columns ['grievance', 'department', 'urgency']
label_column: 'department' or 'urgency'
Returns:
Cleaned DataFrame with columns ['grievance', 'label']
"""
if label_column not in ['department', 'urgency']:
raise ValueError("label_column must be either 'department' or 'urgency'")
df = df.copy()
df['grievance'] = df['grievance'].apply(clean_text)
if label_column == 'department':
df['label'] = df['department'].map(department2id)
else:
df['label'] = df['urgency'].map(urgency2id)
# Keep only relevant columns
df = df[['grievance', 'label']].dropna()
return df
# Train-Test-Validation Split
def split_dataset(df: pd.DataFrame,train_size:float = 0.8, test_size: float = 0.1, val_size: float = 0.1, random_state: int = 42) -> DatasetDict:
"""
Split the dataframe into train, test, and validation Hugging Face datasets.
Returns:
DatasetDict with keys: train, test, eval
"""
# Initial train + temp split
total = train_size + val_size + test_size
if not (0.99 < total < 1.01):
raise ValueError("train_size + val_size + test_size must sum to 1.0")
# first split into train + temp (temp will become val+test)
temp_ratio = val_size + test_size
train_df, temp_df = train_test_split(
df, test_size=temp_ratio, random_state=random_state, stratify=df['label']
)
# split temp into val and test
relative_val_size = val_size / temp_ratio
val_df, test_df = train_test_split(
temp_df, test_size=(1 - relative_val_size), random_state=random_state, stratify=temp_df['label']
)
# convert to HF Dataset
dataset_dict = DatasetDict({
'train': Dataset.from_pandas(train_df.reset_index(drop=True)),
'eval': Dataset.from_pandas(val_df.reset_index(drop=True)),
'test': Dataset.from_pandas(test_df.reset_index(drop=True))
})
return dataset_dict
# upload readme.md file
def upload_hf_readme(hf_token: str, metadata: dict):
"""
Uploads or updates a dynamic README.md file in the Hugging Face dataset repository
with proper YAML metadata for dataset cards.
Args:
hf_token (str): Hugging Face write access token.
metadata (dict): Metadata dictionary containing:
{
"dataset_name": "mr-kush/misclassified-department",
"version_tag": "v20251017_045551",
"label_column": "department",
"created_at": "2025-10-17T04:55:55.542906",
"commit_message": "Dataset update (department) - 20251017_045551",
"num_samples": 2426,
"splits": {"train": 1940, "eval": 243, "test": 243},
"author": "mr-kush",
"description": "Processed and versioned dataset for department classification."
}
"""
api = HfApi()
label_column = metadata.get("label_column", "department")
dataset_name = metadata.get("dataset_name", "unknown-dataset")
version_tag = metadata.get("version_tag", "v_unknown")
created_at = metadata.get("created_at", "unknown")
num_samples = metadata.get("num_samples", 0)
splits = metadata.get("splits", {})
author = metadata.get("author", "unknown")
description = metadata.get("description", "No description provided.")
# Determine task and type dynamically
if label_column.lower() == "department":
task_category = "text-classification"
task_id = "multi-class-classification"
task_description = "- Department classification"
label_mapping = department2id
elif label_column.lower() == "urgency":
task_category = "text-classification"
task_id = "multi-class-classification"
task_description = "- Urgency classification"
label_mapping = urgency2id
# Split information
split_info = "\n".join([f"- **{k.capitalize()}**: {v} samples" for k, v in splits.items()]) if splits else "N/A"
# Professional label mapping table
if label_mapping:
label_map_str = "| Label | ID |\n|:------|:--:|\n" + "\n".join([f"| {k} | {v} |" for k, v in label_mapping.items()])
else:
label_map_str = "_No label mapping available._"
# Construct YAML metadata (Hugging Face dataset card standard)
yaml_header = f"""---
datasets:
- {dataset_name}
language:
- en
- ne
task_categories:
- {task_category}
task_ids:
- {task_id}
license: apache-2.0
size_categories:
- 1K<n<10K
pretty_name: Sambodhan Grievance Dataset ({label_column.capitalize()})
---
"""
# Construct the README content
readme_content = yaml_header + f"""# Dataset: `{dataset_name}`
{description}
---
## Version Information
- **Version Tag:** `{version_tag}`
- **Created At:** {created_at}
- **Label Column:** `{label_column}`
- **Total Samples:** {num_samples}
### Label Mapping
{label_map_str}
## Dataset Splits
{split_info}
## Task Description
This dataset contains preprocessed citizen grievance texts for classification tasks:
{task_description}
## Author
- **Maintainer:** `{author}`
## Pipeline Information
This dataset is automatically generated and versioned by the **Sambodhan AI Data Pipeline**.
It ensures:
- Continuous version tracking
- Consistent preprocessing standards
- Reproducibility for fine-tuning and evaluation
---
_Last updated automatically by the pipeline on {created_at}._
"""
# Upload README.md file to the dataset repository
api.upload_file(
path_or_fileobj=readme_content.encode("utf-8"),
path_in_repo="README.md",
repo_id=dataset_name,
repo_type="dataset",
token=hf_token,
commit_message=f"Update README.md ({version_tag})"
)
print(f"README.md successfully uploaded for {dataset_name} ({version_tag})")
# Main Function
def preprocess_and_push_dataset(df: pd.DataFrame,
hf_token,
hf_dataset_dir,
label_column: str = 'department',
train_size: float = 0.8,
val_size: float = 0.1,
test_size: float = 0.1
) -> DatasetDict:
"""
Complete pipeline: clean text, encode labels, split dataset, and upload to Hugging Face Hub.
Args:
df: pandas DataFrame with columns ['grievance', 'department', 'urgency']
hf_token: HuggingFace Write Access Token
hf_dataset_dir: HuggingFace Dataset Directory Link (mr-kush/misclassified-department)
label_column: 'department' or 'urgency'
Returns:
Cleaned DataFrame with columns ['grievance', 'label']
"""
# STEP 1: Preprocess
df_clean = clean_and_encode_dataset(df, label_column=label_column)
hf_dataset = split_dataset(df_clean,
train_size=train_size,
val_size=val_size,
test_size=test_size) # returns DatasetDict {'train':..., 'test':...}
# STEP 2: Prepare version identifier
timestamp = datetime.now(UTC).strftime("%Y%m%d_%H%M%S")
version_tag = f"v{timestamp}"
# STEP 3: Create/ensure repo exists
api = HfApi()
create_repo(
repo_id=hf_dataset_dir,
token=hf_token,
repo_type="dataset",
private=False,
exist_ok=True
)
# STEP 4: Commit message with timestamp
commit_message = f"Dataset update ({label_column}) - {timestamp}"
# STEP 5: Push dataset to HF (creates a new commit)
try:
hf_dataset.push_to_hub(
hf_dataset_dir,
token=hf_token,
commit_message=commit_message
)
print(f"[INFO] Dataset successfully pushed to Hugging Face Hub: {hf_dataset_dir}")
except Exception as e:
print(f"[ERROR] Failed to push dataset: {e}")
raise e
# STEP 6: Create Metadata File
metadata = {
"dataset_name": hf_dataset_dir,
"version_tag": version_tag,
"label_column": label_column,
"created_at": datetime.now(UTC).isoformat(),
"commit_message": commit_message,
"num_samples": len(df_clean),
"splits": {k: len(v) for k, v in hf_dataset.items()},
"author": "mr-kush",
"description": f"Processed and versioned dataset for {label_column} classification."
}
metadata_path = "dataset_metadata.json"
with open(metadata_path, "w") as f:
json.dump(metadata, f, indent=4)
print(f"[INFO] Metadata file created: {metadata_path}")
# STEP 7: Upload Metadata JSON to the Same HF Repo
try:
api.upload_file(
path_or_fileobj=metadata_path,
path_in_repo="dataset_metadata.json",
repo_id=hf_dataset_dir,
repo_type="dataset",
token=hf_token,
commit_message=f"Add metadata for version {version_tag}"
)
print(f"[INFO] Metadata uploaded to HF Hub")
except Exception as e:
print(f"[WARN] Failed to upload metadata: {e}")
# STEP 8: Clean Up Local Metadata File
if os.path.exists(metadata_path):
os.remove(metadata_path)
# Step 9: Upload the Readme.md
upload_hf_readme(hf_token, metadata)
# STEP 10: Tag the commit with timestamp version
try:
api.create_tag(
repo_id=hf_dataset_dir,
repo_type="dataset",
tag=version_tag,
token=hf_token
)
print(f"[INFO] Version tag created: {version_tag}")
except Exception as e:
print(f"[WARN] Failed to tag version: {e}")
# STEP 11: Return DatasetDict for local use
return hf_dataset
# Example Usage
# if __name__ == "__main__":
# # Load dataset
# df = pd.read_csv('grievances.csv') # assumes columns ['grievance','department','urgency']
# # Choose label column: 'department' or 'urgency'
# label_column = 'department'
# hf_dataset = preprocess_pipeline(df, hf_token='kkk', hf_dataset_dir='kkk',label_column=label_column)
# print(hf_dataset)
|