Spaces:
Paused
Paused
File size: 6,831 Bytes
58bdb4f d5d002c 58bdb4f d5d002c 58bdb4f d5d002c 58bdb4f d5d002c 58bdb4f d5d002c 775582e d5d002c 58bdb4f d5d002c 58bdb4f d5d002c 58bdb4f d5d002c 58bdb4f d5d002c 58bdb4f d5d002c 58bdb4f d5d002c 58bdb4f d5d002c 58bdb4f d5d002c 58bdb4f d5d002c 775582e d5d002c 58bdb4f 775582e d5d002c 775582e 58bdb4f 775582e d5d002c 58bdb4f 775582e d5d002c 58bdb4f d5d002c 58bdb4f d5d002c 58bdb4f d5d002c 58bdb4f d5d002c 58bdb4f d5d002c 58bdb4f d5d002c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import os
import time
import wandb
from dotenv import load_dotenv
from sqlalchemy import create_engine
from sqlalchemy.exc import SQLAlchemyError
from huggingface_hub import HfApi
from preprocess_and_prepare_dataset import preprocess_and_push_dataset
from prepare_pd_df import fetch_misclassified_dataframe
# LOAD ENVIRONMENT
load_dotenv()
def prepare_datasets():
"""
Fetch misclassified data, preprocess, and push datasets to Hugging Face.
Tracks all steps and metrics in Weights & Biases (W&B).
"""
# CONFIGURATION
hf_token = os.getenv("HF_TOKEN")
dept_dataset_dir = os.getenv("DEPARTMENT_DATASET")
urgency_dataset_dir = os.getenv("URGENCY_DATASET")
DB_URL = os.getenv("POSTGRES_URL")
PREPARE_DATASET_SPACE_ID = os.getenv("PREPARE_DATASET_SPACE_ID")
WANDB_API_KEY = os.getenv('WANDB_API_KEY')
WANDB_PROJECT_NAME = os.getenv('WANDB_PROJECT_NAME', "sambodhan-dataset-pipeline")
MIN_DATASET_LEN= os.getenv('MIN_DATASET_LEN', 1000)
# Validate environment variables
required_env = {
"HF_TOKEN": hf_token,
"DEPARTMENT_DATASET": dept_dataset_dir,
"URGENCY_DATASET": urgency_dataset_dir,
"POSTGRES_URL": DB_URL,
"WANDB_API_KEY": WANDB_API_KEY,
}
missing_vars = [k for k, v in required_env.items() if not v]
if missing_vars:
raise EnvironmentError(f"Missing required environment variables: {missing_vars}")
# INIT W&B
wandb.login(key=WANDB_API_KEY)
run = wandb.init(
project=WANDB_PROJECT_NAME,
job_type="prepare_dataset",
config={
"database_url": DB_URL,
"department_dataset": dept_dataset_dir,
"urgency_dataset": urgency_dataset_dir,
"hf_space_id": PREPARE_DATASET_SPACE_ID,
"timestamp": time.strftime('%Y-%m-%d %H:%M:%S'),
},
tags=["dataset-prep", "hf-space", "auto-sync"],
settings=wandb.Settings(start_method="thread"),
)
wandb.log({"status": "starting_pipeline"})
wandb.termlog("Starting dataset preparation pipeline...")
# DATABASE CONNECTION
try:
engine = create_engine(DB_URL, pool_pre_ping=True)
wandb.termlog("Created SQLAlchemy engine. Validating connection...")
max_attempts = 3
for attempt in range(1, max_attempts + 1):
try:
with engine.connect() as conn:
conn.exec_driver_sql("SELECT 1")
wandb.termlog("Database connection successful.")
wandb.log({"db_connection_status": "success"})
break
except SQLAlchemyError as e:
if attempt == max_attempts:
wandb.termlog("Database connection failed after multiple attempts.")
wandb.log({"db_connection_status": "failed"})
raise
wait = 2 ** attempt
wandb.termlog(f"Attempt {attempt} failed: {e}. Retrying in {wait}s...")
time.sleep(wait)
except Exception as e:
wandb.alert(
title="Database Connection Failed",
text=str(e),
level=wandb.AlertLevel.ERROR,
)
wandb.finish(exit_code=1)
raise
# DATASET PROCESSING
dataset_mapping = {
"department": dept_dataset_dir,
"urgency": urgency_dataset_dir,
}
for label, dataset_dir in dataset_mapping.items():
try:
wandb.termlog(f"Fetching misclassified data for '{label}'...")
df = fetch_misclassified_dataframe(
label_column=label,
engine=engine,
correct_ratio=0.5,
)
record_count = len(df)
wandb.log({f"{label}_records_fetched": record_count})
wandb.termlog(f"Retrieved {record_count} records for '{label}'.")
# Check dataset length before pushing
if record_count < int(MIN_DATASET_LEN):
msg = f"Skipped pushing '{label}' dataset — insufficient data ({record_count} < {MIN_DATASET_LEN})."
wandb.termlog(msg)
wandb.log({f"{label}_push_status": "skipped_insufficient_data"})
# Optional: raise controlled exception (won’t stop outer loop)
raise ValueError(msg)
# If sufficient data, proceed
wandb.termlog(f"Preprocessing and pushing '{label}' dataset to HF Hub...")
dataset = preprocess_and_push_dataset(
df=df,
hf_token=hf_token,
hf_dataset_dir=dataset_dir,
label_column=label,
)
wandb.termlog(f"Successfully pushed '{label}' dataset.")
wandb.log({f"{label}_push_status": "success"})
wandb.alert(
title=f"{label.capitalize()} Dataset Updated",
text=f"Successfully pushed dataset to {dataset_dir}",
level=wandb.AlertLevel.INFO,
)
except ValueError as ve:
# Controlled skip — no crash, just log warning
wandb.alert(
title=f"{label.capitalize()} Dataset Skipped",
text=str(ve),
level=wandb.AlertLevel.WARN,
)
wandb.termlog(f"[SKIPPED] {ve}")
continue # skip to next label safely
except Exception as e:
# Real errors
wandb.alert(
title=f"{label.capitalize()} Dataset Preparation Failed",
text=str(e),
level=wandb.AlertLevel.ERROR,
)
wandb.log({f"{label}_push_status": "failed"})
wandb.termlog(f"Error processing '{label}' dataset: {e}")
raise
# PAUSE HUGGING FACE SPACE
if PREPARE_DATASET_SPACE_ID:
try:
wandb.termlog("⏸ Attempting to pause Hugging Face Space...")
api = HfApi()
api.pause_space(repo_id=PREPARE_DATASET_SPACE_ID, token=hf_token)
wandb.log({"hf_space_pause": "success"})
wandb.termlog("Hugging Face Space paused successfully.")
except Exception as e:
wandb.termlog(f"Failed to pause HF Space: {e}")
wandb.log({"hf_space_pause": "failed"})
wandb.alert(
title="HF Space Pause Failed",
text=str(e),
level=wandb.AlertLevel.WARN,
)
# COMPLETE
wandb.log({"status": "completed"})
wandb.termlog("Dataset preparation completed successfully!")
run.finish(exit_code=0)
# ENTRY POINT
if __name__ == "__main__":
try:
prepare_datasets()
except Exception as e:
wandb.termlog(f" Pipeline failed due to an error: {e}")
wandb.finish(exit_code=1)
raise
|