Spaces:
Sleeping
Sleeping
File size: 14,406 Bytes
d2d1011 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
"""
Gradio app to explore pancreas cancer clinical report annotations.
Loads data from rntc/biomed-fr-pancreas-annotations on HuggingFace.
"""
import gradio as gr
from datasets import load_dataset
from difflib import SequenceMatcher
# Load the dataset
print("Loading dataset from HuggingFace...")
dataset = load_dataset("rntc/biomed-fr-pancreas-annotations", split="train")
print(f"Loaded {len(dataset)} samples")
def fuzzy_find_span(text: str, span: str, threshold: float = 0.85) -> tuple:
"""
Find a span in text with fuzzy matching.
Returns (start, end) or None if not found.
"""
# First try exact match
idx = text.find(span)
if idx != -1:
return (idx, idx + len(span))
# Try fuzzy match with sliding window
span_len = len(span)
if span_len < 10 or span_len > len(text):
return None
best_ratio = 0
best_pos = None
# Use a window slightly larger than span
window_size = min(span_len + 20, len(text))
for i in range(0, len(text) - span_len + 1, max(1, span_len // 4)):
window = text[i:i + window_size]
ratio = SequenceMatcher(None, span, window[:span_len]).ratio()
if ratio > best_ratio and ratio >= threshold:
best_ratio = ratio
best_pos = i
if best_pos is not None:
return (best_pos, best_pos + span_len)
return None
def escape_html(text: str) -> str:
"""Escape HTML special characters."""
if not text:
return ""
return (str(text)
.replace("&", "&")
.replace("<", "<")
.replace(">", ">")
.replace('"', """))
# Soft pastel colors for better readability
COLORS = [
"#FFE082", # amber
"#A5D6A7", # green
"#90CAF9", # blue
"#FFAB91", # deep orange
"#CE93D8", # purple
"#80DEEA", # cyan
"#C5E1A5", # light green
"#FFCC80", # orange
"#B39DDB", # deep purple
"#81D4FA", # light blue
"#EF9A9A", # red
"#FFF59D", # yellow
"#F48FB1", # pink
"#80CBC4", # teal
"#BCAAA4", # brown
]
def highlight_spans_in_text(cr_text: str, annotation: dict) -> str:
"""
Highlight spans in the CR text based on annotations.
Returns HTML with highlighted spans.
"""
if not cr_text or not annotation:
return f"<div class='cr-text'>{escape_html(cr_text)}</div>"
# Collect all spans with their variable names
spans_to_highlight = []
for var_name, var_data in annotation.items():
if var_data and isinstance(var_data, dict):
span = var_data.get("span")
value = var_data.get("value")
if span and value and len(span) >= 5: # Skip very short spans
spans_to_highlight.append({
"span": span,
"var_name": var_name,
"value": str(value)
})
if not spans_to_highlight:
return f"<div class='cr-text'>{escape_html(cr_text)}</div>"
# Sort spans by length (longest first) to prioritize longer matches
spans_to_highlight.sort(key=lambda x: len(x["span"]), reverse=True)
# Find spans in text (with fuzzy matching)
found_spans = []
for item in spans_to_highlight:
result = fuzzy_find_span(cr_text, item["span"])
if result:
start, end = result
found_spans.append({
"start": start,
"end": end,
"var_name": item["var_name"],
"value": item["value"],
"span": cr_text[start:end] # Use actual text from CR
})
if not found_spans:
return f"<div class='cr-text'>{escape_html(cr_text)}</div>"
# Sort by start position
found_spans.sort(key=lambda x: x["start"])
# Remove overlapping spans (keep the first/longest one)
non_overlapping = []
for span in found_spans:
if not non_overlapping:
non_overlapping.append(span)
elif span["start"] >= non_overlapping[-1]["end"]:
non_overlapping.append(span)
# Assign colors to variable names
var_colors = {}
color_idx = 0
for span in non_overlapping:
if span["var_name"] not in var_colors:
var_colors[span["var_name"]] = COLORS[color_idx % len(COLORS)]
color_idx += 1
# Build HTML with highlights
html_parts = []
last_end = 0
for span in non_overlapping:
# Add text before this span
if span["start"] > last_end:
html_parts.append(escape_html(cr_text[last_end:span["start"]]))
# Add highlighted span
color = var_colors[span["var_name"]]
var_label = span["var_name"].replace("_", " ").replace(" ", " ").title()
tooltip = f"{var_label}\\nβ {span['value']}"
html_parts.append(
f'<mark class="entity" style="background-color: {color};" '
f'title="{escape_html(tooltip)}" '
f'data-var="{escape_html(var_label)}">'
f'{escape_html(span["span"])}'
f'<span class="entity-label">{escape_html(var_label[:20])}</span>'
f'</mark>'
)
last_end = span["end"]
# Add remaining text
if last_end < len(cr_text):
html_parts.append(escape_html(cr_text[last_end:]))
html = "".join(html_parts)
return f"<div class='cr-text'>{html}</div>"
def format_annotations_table(annotation: dict) -> str:
"""Format annotations as an HTML table with categories."""
if not annotation:
return "<p>No annotations</p>"
# Group variables by category (simple heuristic based on name)
categories = {
"Patient Info": ["date_of_birth", "age_at_cancer_diagnosis", "biological_gender", "vital_status", "date_of_death"],
"Diagnosis": ["date_of_cancer_diagnostic", "primary_tumor_localisation", "ctnm_stage", "stage_as_per_ehr", "histological_type", "epithelial_tumor_subtype"],
"Tumor Characteristics": ["resectability_status", "two_largest_diameters", "metastasis_localisation", "number_of_metastatic_sites"],
"Lab Results": ["crp_at_diagnosis", "albumin_at_diagnosis", "alanine_transaminase", "aspartate_aminotransferase", "conjugated_bilirubin", "ca19_9"],
"Treatment": ["surgery", "loco_regional_radiotherapy", "immunotherapy", "targeted_therapy", "full_course_of_initial_treatment"],
"Molecular": ["germline_mutation", "tumor_molecular_profiling"],
"Progression": ["date_of_first_progression", "type_of_first_progression", "treatment_at_first_progression", "best_response", "reason_for_treatment_end"],
}
def get_category(var_name):
for cat, keywords in categories.items():
for kw in keywords:
if kw in var_name.lower():
return cat
return "Other"
# Group rows by category
categorized = {}
for var_name, var_data in annotation.items():
if var_data and isinstance(var_data, dict):
value = var_data.get("value")
if value:
cat = get_category(var_name)
if cat not in categorized:
categorized[cat] = []
categorized[cat].append((var_name, var_data))
if not categorized:
return "<p class='no-data'>No extracted values</p>"
html_parts = []
for category in ["Patient Info", "Diagnosis", "Tumor Characteristics", "Lab Results", "Treatment", "Molecular", "Progression", "Other"]:
if category not in categorized:
continue
html_parts.append(f"<div class='category'><h4>{category}</h4>")
html_parts.append("<table class='annotations-table'>")
for var_name, var_data in categorized[category]:
value = var_data.get("value", "")
span = var_data.get("span", "")
var_label = var_name.replace("_", " ").title()
span_preview = span[:80] + "..." if span and len(span) > 80 else span
html_parts.append(f"""
<tr>
<td class='var-name'>{escape_html(var_label)}</td>
<td class='var-value'>{escape_html(str(value))}</td>
<td class='var-span'>{escape_html(span_preview) if span_preview else '-'}</td>
</tr>
""")
html_parts.append("</table></div>")
return "".join(html_parts)
def get_stats(annotation: dict) -> str:
"""Get statistics about extracted values."""
if not annotation:
return "No data"
total = len(annotation)
extracted = sum(1 for v in annotation.values() if v and isinstance(v, dict) and v.get("value"))
return f"π Extracted: {extracted}/{total} variables ({100*extracted//total}%)"
def display_sample(sample_idx: int):
"""Display a sample from the dataset."""
if sample_idx < 0 or sample_idx >= len(dataset):
return "Invalid sample index", "<p>Invalid sample index</p>", "Invalid"
sample = dataset[int(sample_idx)]
cr_text = sample.get("CR", "")
annotation = sample.get("annotation", {})
highlighted_html = highlight_spans_in_text(cr_text, annotation)
annotations_html = format_annotations_table(annotation)
stats = get_stats(annotation)
return highlighted_html, annotations_html, stats
def search_samples(query: str):
"""Search samples by text content."""
if not query or len(query) < 3:
# Return first 20 samples
return [[i, dataset[i]["CR"][:80] + "..."] for i in range(min(20, len(dataset)))]
results = []
query_lower = query.lower()
for i, sample in enumerate(dataset):
cr = sample.get("CR", "")
if query_lower in cr.lower():
results.append([i, cr[:80] + "..."])
if len(results) >= 50:
break
if not results:
return [["No results", f"No samples found containing '{query}'"]]
return results
# Custom CSS for better styling
custom_css = """
.cr-text {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
font-size: 14px;
line-height: 1.8;
padding: 20px;
background: #fafafa;
border-radius: 8px;
white-space: pre-wrap;
max-height: 500px;
overflow-y: auto;
}
.entity {
padding: 2px 6px;
border-radius: 4px;
cursor: help;
position: relative;
display: inline;
transition: all 0.2s;
}
.entity:hover {
filter: brightness(0.9);
box-shadow: 0 2px 8px rgba(0,0,0,0.15);
}
.entity-label {
display: none;
position: absolute;
bottom: 100%;
left: 0;
background: #333;
color: white;
padding: 4px 8px;
border-radius: 4px;
font-size: 11px;
white-space: nowrap;
z-index: 100;
}
.entity:hover .entity-label {
display: block;
}
.category {
margin-bottom: 20px;
}
.category h4 {
color: #1976d2;
border-bottom: 2px solid #1976d2;
padding-bottom: 8px;
margin-bottom: 12px;
}
.annotations-table {
width: 100%;
border-collapse: collapse;
font-size: 13px;
}
.annotations-table tr:nth-child(even) {
background: #f5f5f5;
}
.annotations-table td {
padding: 10px 12px;
border-bottom: 1px solid #e0e0e0;
vertical-align: top;
}
.var-name {
font-weight: 600;
color: #333;
width: 30%;
}
.var-value {
color: #1976d2;
font-weight: 500;
width: 25%;
}
.var-span {
color: #666;
font-style: italic;
font-size: 12px;
width: 45%;
}
.no-data {
color: #999;
font-style: italic;
padding: 20px;
text-align: center;
}
.stats-badge {
background: #e3f2fd;
color: #1976d2;
padding: 8px 16px;
border-radius: 20px;
font-weight: 500;
display: inline-block;
}
"""
# Build the Gradio interface
with gr.Blocks(
title="Pancreas Cancer Annotations Explorer",
theme=gr.themes.Soft(primary_hue="blue"),
css=custom_css
) as demo:
gr.Markdown("""
# π¬ Pancreas Cancer Clinical Report Annotations Explorer
Explore structured annotations extracted from synthetic French clinical reports about pancreas cancer.
**How to use:**
- Use the slider or search to navigate samples
- Hover over highlighted text to see extracted variables
- View the complete annotation table below
""")
with gr.Row():
with gr.Column(scale=2):
sample_slider = gr.Slider(
minimum=0,
maximum=len(dataset) - 1,
step=1,
value=0,
label=f"π Sample Index (0 - {len(dataset) - 1})",
info="Drag to browse samples"
)
with gr.Column(scale=1):
stats_display = gr.Markdown("", elem_classes=["stats-badge"])
with gr.Row():
with gr.Column(scale=1):
search_box = gr.Textbox(
label="π Search",
placeholder="Type to search in clinical reports...",
info="Min 3 characters"
)
search_results = gr.Dataframe(
headers=["#", "Preview"],
label="Results",
interactive=False,
height=200
)
gr.Markdown("---")
gr.Markdown("### π Clinical Report with Entity Highlighting")
gr.Markdown("*Hover over colored text to see the extracted variable and value*")
cr_display = gr.HTML()
gr.Markdown("---")
gr.Markdown("### π Extracted Annotations")
annotations_display = gr.HTML()
# Event handlers
sample_slider.change(
fn=display_sample,
inputs=[sample_slider],
outputs=[cr_display, annotations_display, stats_display]
)
search_box.change(
fn=search_samples,
inputs=[search_box],
outputs=[search_results]
)
def on_select(evt: gr.SelectData, data):
if data is not None and len(data) > 0:
try:
selected_idx = int(data[evt.index[0]][0])
return selected_idx
except (ValueError, IndexError, TypeError):
pass
return 0
search_results.select(
fn=on_select,
inputs=[search_results],
outputs=[sample_slider]
)
# Load first sample on start
demo.load(
fn=display_sample,
inputs=[sample_slider],
outputs=[cr_display, annotations_display, stats_display]
)
if __name__ == "__main__":
demo.launch()
|