Update app_flash.py
Browse files- app_flash.py +28 -61
app_flash.py
CHANGED
|
@@ -6,14 +6,14 @@ import torch.optim as optim
|
|
| 6 |
from datasets import load_dataset
|
| 7 |
import gradio as gr
|
| 8 |
from transformers import AutoTokenizer, AutoModel
|
| 9 |
-
from flashpack import FlashPackMixin
|
| 10 |
from typing import Tuple
|
| 11 |
|
| 12 |
# ============================================================
|
| 13 |
-
# 🖥 Force CPU mode
|
| 14 |
# ============================================================
|
| 15 |
device = torch.device("cpu")
|
| 16 |
-
torch.set_num_threads(4) # reduce CPU contention
|
| 17 |
print(f"🔧 Forcing device: {device} (CPU-only mode)")
|
| 18 |
|
| 19 |
# ============================================================
|
|
@@ -37,7 +37,6 @@ class GemmaTrainer(nn.Module, FlashPackMixin):
|
|
| 37 |
# ============================================================
|
| 38 |
def build_encoder(model_name="gpt2", max_length: int = 32):
|
| 39 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 40 |
-
# Some GPT2 tokenizers have no pad token — set eos as pad
|
| 41 |
if tokenizer.pad_token is None:
|
| 42 |
tokenizer.pad_token = tokenizer.eos_token
|
| 43 |
|
|
@@ -46,10 +45,6 @@ def build_encoder(model_name="gpt2", max_length: int = 32):
|
|
| 46 |
|
| 47 |
@torch.no_grad()
|
| 48 |
def encode(prompt: str) -> torch.Tensor:
|
| 49 |
-
"""
|
| 50 |
-
Encodes a single prompt and returns a CPU tensor of shape (1, hidden_size).
|
| 51 |
-
Always returns a CPU tensor to avoid device juggling in downstream code.
|
| 52 |
-
"""
|
| 53 |
inputs = tokenizer(
|
| 54 |
prompt,
|
| 55 |
return_tensors="pt",
|
|
@@ -57,8 +52,7 @@ def build_encoder(model_name="gpt2", max_length: int = 32):
|
|
| 57 |
padding="max_length",
|
| 58 |
max_length=max_length,
|
| 59 |
).to(device)
|
| 60 |
-
|
| 61 |
-
outputs = embed_model(**inputs).last_hidden_state.mean(dim=1) # (1, hidden)
|
| 62 |
return outputs.cpu()
|
| 63 |
|
| 64 |
return tokenizer, embed_model, encode
|
|
@@ -70,10 +64,10 @@ def train_flashpack_model(
|
|
| 70 |
dataset_name: str = "gokaygokay/prompt-enhancer-dataset",
|
| 71 |
model_name: str = "gpt2",
|
| 72 |
max_length: int = 32,
|
| 73 |
-
max_encode: int =
|
| 74 |
push_to_hub: bool = False,
|
| 75 |
hf_repo: str = "rahul7star/FlashPack",
|
| 76 |
-
) ->
|
| 77 |
|
| 78 |
# 1️⃣ Load dataset
|
| 79 |
print("📦 Loading dataset...")
|
|
@@ -84,23 +78,17 @@ def train_flashpack_model(
|
|
| 84 |
dataset = dataset.select(range(limit))
|
| 85 |
print(f"⚡ Encoding only {len(dataset)} prompts (max limit {max_encode})")
|
| 86 |
|
| 87 |
-
# 2️⃣ Setup
|
| 88 |
-
tokenizer, embed_model, encode_fn = build_encoder(model_name
|
| 89 |
|
| 90 |
-
# 3️⃣ Encode dataset
|
| 91 |
print("🔢 Encoding dataset into embeddings (CPU-friendly)...")
|
| 92 |
short_list, long_list = [], []
|
| 93 |
for i, item in enumerate(dataset):
|
| 94 |
short_list.append(encode_fn(item["short_prompt"]))
|
| 95 |
long_list.append(encode_fn(item["long_prompt"]))
|
| 96 |
|
| 97 |
-
|
| 98 |
-
if (i + 1) >= max_encode:
|
| 99 |
-
print(f"⚡ Reached max encode limit: {max_encode} prompts, stopping early.")
|
| 100 |
-
break
|
| 101 |
-
|
| 102 |
-
# Progress logging
|
| 103 |
-
if (i + 1) % 50 == 0:
|
| 104 |
print(f" → Encoded {i+1}/{limit} prompts")
|
| 105 |
gc.collect()
|
| 106 |
|
|
@@ -108,7 +96,7 @@ def train_flashpack_model(
|
|
| 108 |
long_embeddings = torch.vstack(long_list)
|
| 109 |
print(f"✅ Finished encoding {short_embeddings.shape[0]} prompts")
|
| 110 |
|
| 111 |
-
# 4️⃣ Initialize
|
| 112 |
model = GemmaTrainer(
|
| 113 |
input_dim=short_embeddings.shape[1],
|
| 114 |
hidden_dim=min(512, short_embeddings.shape[1]),
|
|
@@ -117,8 +105,7 @@ def train_flashpack_model(
|
|
| 117 |
|
| 118 |
criterion = nn.MSELoss()
|
| 119 |
optimizer = optim.Adam(model.parameters(), lr=1e-3)
|
| 120 |
-
max_epochs =
|
| 121 |
-
tolerance = 1e-4
|
| 122 |
batch_size = 32
|
| 123 |
|
| 124 |
print("🚀 Training FlashPack mapper model (CPU)...")
|
|
@@ -143,26 +130,28 @@ def train_flashpack_model(
|
|
| 143 |
if epoch % 5 == 0 or epoch == max_epochs-1:
|
| 144 |
print(f"Epoch {epoch+1}/{max_epochs}, Loss={epoch_loss:.6f}")
|
| 145 |
|
| 146 |
-
if epoch_loss < tolerance:
|
| 147 |
-
print(f"✅ Converged at epoch {epoch+1}, Loss={epoch_loss:.6f}")
|
| 148 |
-
break
|
| 149 |
-
|
| 150 |
print("✅ Training finished!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
return model, dataset, embed_model, tokenizer, long_embeddings
|
| 152 |
|
| 153 |
# ============================================================
|
| 154 |
-
# 4️⃣
|
| 155 |
# ============================================================
|
| 156 |
-
# For demo speed in CPU mode, you might want a subset_limit (e.g., 1000).
|
| 157 |
-
# Set subset_limit=None to use full dataset.
|
| 158 |
model, dataset, embed_model, tokenizer, long_embeddings = train_flashpack_model(
|
| 159 |
-
|
| 160 |
-
push_to_hub=False
|
| 161 |
)
|
| 162 |
|
| 163 |
model.eval()
|
| 164 |
|
| 165 |
-
#
|
|
|
|
|
|
|
| 166 |
@torch.no_grad()
|
| 167 |
def encode_for_inference(prompt: str) -> torch.Tensor:
|
| 168 |
inputs = tokenizer(
|
|
@@ -174,22 +163,13 @@ def encode_for_inference(prompt: str) -> torch.Tensor:
|
|
| 174 |
).to(device)
|
| 175 |
return embed_model(**inputs).last_hidden_state.mean(dim=1).cpu()
|
| 176 |
|
| 177 |
-
# ============================================================
|
| 178 |
-
# 5️⃣ Enhance prompt function (nearest neighbor via cosine)
|
| 179 |
-
# ============================================================
|
| 180 |
def enhance_prompt(user_prompt: str, temperature: float, max_tokens: int, chat_history):
|
| 181 |
chat_history = chat_history or []
|
|
|
|
|
|
|
| 182 |
|
| 183 |
-
# encode user prompt (CPU tensor)
|
| 184 |
-
short_emb = encode_for_inference(user_prompt) # (1, dim)
|
| 185 |
-
with torch.no_grad():
|
| 186 |
-
mapped = model(short_emb.to(device)).cpu() # (1, dim)
|
| 187 |
-
|
| 188 |
-
# cosine similarity against dataset long embeddings
|
| 189 |
cos = nn.CosineSimilarity(dim=1)
|
| 190 |
-
# mapped.repeat(len(long_embeddings), 1) is heavy; do efficient matmul similarity:
|
| 191 |
sims = (long_embeddings @ mapped.t()).squeeze(1)
|
| 192 |
-
# normalize: sims / (||long|| * ||mapped||)
|
| 193 |
long_norms = long_embeddings.norm(dim=1)
|
| 194 |
mapped_norm = mapped.norm()
|
| 195 |
sims = sims / (long_norms * (mapped_norm + 1e-12))
|
|
@@ -209,18 +189,14 @@ with gr.Blocks(title="Prompt Enhancer – FlashPack (CPU)", theme=gr.themes.Soft
|
|
| 209 |
"""
|
| 210 |
# ✨ Prompt Enhancer (FlashPack mapper)
|
| 211 |
Enter a short prompt, and the model will **expand it with details and creative context**.
|
| 212 |
-
(
|
| 213 |
"""
|
| 214 |
)
|
| 215 |
|
| 216 |
with gr.Row():
|
| 217 |
chatbot = gr.Chatbot(height=400, label="Enhanced Prompts", type="messages")
|
| 218 |
with gr.Column(scale=1):
|
| 219 |
-
user_prompt = gr.Textbox(
|
| 220 |
-
placeholder="Enter a short prompt...",
|
| 221 |
-
label="Your Prompt",
|
| 222 |
-
lines=3,
|
| 223 |
-
)
|
| 224 |
temperature = gr.Slider(0.0, 1.0, value=0.7, step=0.05, label="Temperature")
|
| 225 |
max_tokens = gr.Slider(32, 256, value=128, step=16, label="Max Tokens")
|
| 226 |
send_btn = gr.Button("🚀 Enhance Prompt", variant="primary")
|
|
@@ -230,15 +206,6 @@ with gr.Blocks(title="Prompt Enhancer – FlashPack (CPU)", theme=gr.themes.Soft
|
|
| 230 |
user_prompt.submit(enhance_prompt, [user_prompt, temperature, max_tokens, chatbot], chatbot)
|
| 231 |
clear_btn.click(lambda: [], None, chatbot)
|
| 232 |
|
| 233 |
-
gr.Markdown(
|
| 234 |
-
"""
|
| 235 |
-
---
|
| 236 |
-
💡 **Tips:**
|
| 237 |
-
- CPU mode: training and large-batch encodes can take a while. Use `subset_limit` in the training call for quick tests.
|
| 238 |
-
- Increase *Temperature* for more creative outputs (not used in the nearest-neighbour mapper but kept for UI parity).
|
| 239 |
-
"""
|
| 240 |
-
)
|
| 241 |
-
|
| 242 |
# ============================================================
|
| 243 |
# 7️⃣ Launch
|
| 244 |
# ============================================================
|
|
|
|
| 6 |
from datasets import load_dataset
|
| 7 |
import gradio as gr
|
| 8 |
from transformers import AutoTokenizer, AutoModel
|
| 9 |
+
from flashpack import FlashPackMixin
|
| 10 |
from typing import Tuple
|
| 11 |
|
| 12 |
# ============================================================
|
| 13 |
+
# 🖥 Force CPU mode
|
| 14 |
# ============================================================
|
| 15 |
device = torch.device("cpu")
|
| 16 |
+
torch.set_num_threads(4) # reduce CPU contention
|
| 17 |
print(f"🔧 Forcing device: {device} (CPU-only mode)")
|
| 18 |
|
| 19 |
# ============================================================
|
|
|
|
| 37 |
# ============================================================
|
| 38 |
def build_encoder(model_name="gpt2", max_length: int = 32):
|
| 39 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
| 40 |
if tokenizer.pad_token is None:
|
| 41 |
tokenizer.pad_token = tokenizer.eos_token
|
| 42 |
|
|
|
|
| 45 |
|
| 46 |
@torch.no_grad()
|
| 47 |
def encode(prompt: str) -> torch.Tensor:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
inputs = tokenizer(
|
| 49 |
prompt,
|
| 50 |
return_tensors="pt",
|
|
|
|
| 52 |
padding="max_length",
|
| 53 |
max_length=max_length,
|
| 54 |
).to(device)
|
| 55 |
+
outputs = embed_model(**inputs).last_hidden_state.mean(dim=1)
|
|
|
|
| 56 |
return outputs.cpu()
|
| 57 |
|
| 58 |
return tokenizer, embed_model, encode
|
|
|
|
| 64 |
dataset_name: str = "gokaygokay/prompt-enhancer-dataset",
|
| 65 |
model_name: str = "gpt2",
|
| 66 |
max_length: int = 32,
|
| 67 |
+
max_encode: int = 1000, # use smaller number for CPU
|
| 68 |
push_to_hub: bool = False,
|
| 69 |
hf_repo: str = "rahul7star/FlashPack",
|
| 70 |
+
) -> Tuple[GemmaTrainer, object, object, object, torch.Tensor]:
|
| 71 |
|
| 72 |
# 1️⃣ Load dataset
|
| 73 |
print("📦 Loading dataset...")
|
|
|
|
| 78 |
dataset = dataset.select(range(limit))
|
| 79 |
print(f"⚡ Encoding only {len(dataset)} prompts (max limit {max_encode})")
|
| 80 |
|
| 81 |
+
# 2️⃣ Setup encoder
|
| 82 |
+
tokenizer, embed_model, encode_fn = build_encoder(model_name, max_length)
|
| 83 |
|
| 84 |
+
# 3️⃣ Encode dataset
|
| 85 |
print("🔢 Encoding dataset into embeddings (CPU-friendly)...")
|
| 86 |
short_list, long_list = [], []
|
| 87 |
for i, item in enumerate(dataset):
|
| 88 |
short_list.append(encode_fn(item["short_prompt"]))
|
| 89 |
long_list.append(encode_fn(item["long_prompt"]))
|
| 90 |
|
| 91 |
+
if (i + 1) % 50 == 0 or (i + 1) == len(dataset):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
print(f" → Encoded {i+1}/{limit} prompts")
|
| 93 |
gc.collect()
|
| 94 |
|
|
|
|
| 96 |
long_embeddings = torch.vstack(long_list)
|
| 97 |
print(f"✅ Finished encoding {short_embeddings.shape[0]} prompts")
|
| 98 |
|
| 99 |
+
# 4️⃣ Initialize & train model
|
| 100 |
model = GemmaTrainer(
|
| 101 |
input_dim=short_embeddings.shape[1],
|
| 102 |
hidden_dim=min(512, short_embeddings.shape[1]),
|
|
|
|
| 105 |
|
| 106 |
criterion = nn.MSELoss()
|
| 107 |
optimizer = optim.Adam(model.parameters(), lr=1e-3)
|
| 108 |
+
max_epochs = 20
|
|
|
|
| 109 |
batch_size = 32
|
| 110 |
|
| 111 |
print("🚀 Training FlashPack mapper model (CPU)...")
|
|
|
|
| 130 |
if epoch % 5 == 0 or epoch == max_epochs-1:
|
| 131 |
print(f"Epoch {epoch+1}/{max_epochs}, Loss={epoch_loss:.6f}")
|
| 132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
print("✅ Training finished!")
|
| 134 |
+
|
| 135 |
+
# 5️⃣ Push to HF repo if requested
|
| 136 |
+
if push_to_hub:
|
| 137 |
+
model.save_flashpack(hf_repo, target_dtype=torch.float32, push_to_hub=True)
|
| 138 |
+
print(f"✅ Model pushed to HF repo: {hf_repo}")
|
| 139 |
+
|
| 140 |
return model, dataset, embed_model, tokenizer, long_embeddings
|
| 141 |
|
| 142 |
# ============================================================
|
| 143 |
+
# 4️⃣ Run training & load model
|
| 144 |
# ============================================================
|
|
|
|
|
|
|
| 145 |
model, dataset, embed_model, tokenizer, long_embeddings = train_flashpack_model(
|
| 146 |
+
max_encode=1000, # safe CPU-friendly subset
|
| 147 |
+
push_to_hub=False
|
| 148 |
)
|
| 149 |
|
| 150 |
model.eval()
|
| 151 |
|
| 152 |
+
# ============================================================
|
| 153 |
+
# 5️⃣ Inference helpers
|
| 154 |
+
# ============================================================
|
| 155 |
@torch.no_grad()
|
| 156 |
def encode_for_inference(prompt: str) -> torch.Tensor:
|
| 157 |
inputs = tokenizer(
|
|
|
|
| 163 |
).to(device)
|
| 164 |
return embed_model(**inputs).last_hidden_state.mean(dim=1).cpu()
|
| 165 |
|
|
|
|
|
|
|
|
|
|
| 166 |
def enhance_prompt(user_prompt: str, temperature: float, max_tokens: int, chat_history):
|
| 167 |
chat_history = chat_history or []
|
| 168 |
+
short_emb = encode_for_inference(user_prompt)
|
| 169 |
+
mapped = model(short_emb.to(device)).cpu()
|
| 170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
cos = nn.CosineSimilarity(dim=1)
|
|
|
|
| 172 |
sims = (long_embeddings @ mapped.t()).squeeze(1)
|
|
|
|
| 173 |
long_norms = long_embeddings.norm(dim=1)
|
| 174 |
mapped_norm = mapped.norm()
|
| 175 |
sims = sims / (long_norms * (mapped_norm + 1e-12))
|
|
|
|
| 189 |
"""
|
| 190 |
# ✨ Prompt Enhancer (FlashPack mapper)
|
| 191 |
Enter a short prompt, and the model will **expand it with details and creative context**.
|
| 192 |
+
(CPU-only mode.)
|
| 193 |
"""
|
| 194 |
)
|
| 195 |
|
| 196 |
with gr.Row():
|
| 197 |
chatbot = gr.Chatbot(height=400, label="Enhanced Prompts", type="messages")
|
| 198 |
with gr.Column(scale=1):
|
| 199 |
+
user_prompt = gr.Textbox(placeholder="Enter a short prompt...", label="Your Prompt", lines=3)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
temperature = gr.Slider(0.0, 1.0, value=0.7, step=0.05, label="Temperature")
|
| 201 |
max_tokens = gr.Slider(32, 256, value=128, step=16, label="Max Tokens")
|
| 202 |
send_btn = gr.Button("🚀 Enhance Prompt", variant="primary")
|
|
|
|
| 206 |
user_prompt.submit(enhance_prompt, [user_prompt, temperature, max_tokens, chatbot], chatbot)
|
| 207 |
clear_btn.click(lambda: [], None, chatbot)
|
| 208 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
# ============================================================
|
| 210 |
# 7️⃣ Launch
|
| 211 |
# ============================================================
|