Update app_flash.py
Browse files- app_flash.py +15 -14
app_flash.py
CHANGED
|
@@ -3,47 +3,48 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
| 3 |
from flashpack.integrations.transformers import FlashPackTransformersModelMixin
|
| 4 |
|
| 5 |
# ============================================================
|
| 6 |
-
# 1️⃣
|
| 7 |
# ============================================================
|
| 8 |
class FlashPackGemmaModel(AutoModelForCausalLM, FlashPackTransformersModelMixin):
|
| 9 |
"""AutoModelForCausalLM extended with FlashPackMixin for fast save/load"""
|
| 10 |
pass
|
| 11 |
|
|
|
|
| 12 |
|
| 13 |
# ============================================================
|
| 14 |
-
# 2️⃣ Load
|
| 15 |
# ============================================================
|
| 16 |
-
MODEL_ID = "gokaygokay/prompt-enhancer-gemma-3-270m-it"
|
| 17 |
-
|
| 18 |
try:
|
| 19 |
-
print("📂 Trying to load FlashPack
|
| 20 |
model = FlashPackGemmaModel.from_pretrained_flashpack("model_flashpack")
|
| 21 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 22 |
except Exception as e:
|
| 23 |
-
print("⚙️ FlashPack not found, loading from Hugging Face Hub...")
|
| 24 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 25 |
-
model
|
| 26 |
-
|
|
|
|
| 27 |
model.save_pretrained_flashpack("model_flashpack")
|
| 28 |
print("✅ Model saved as FlashPack for next startup!")
|
| 29 |
|
| 30 |
-
#
|
|
|
|
|
|
|
| 31 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device_map="auto")
|
| 32 |
|
| 33 |
|
| 34 |
# ============================================================
|
| 35 |
-
#
|
| 36 |
# ============================================================
|
| 37 |
def enhance_prompt(user_prompt, temperature, max_tokens, chat_history):
|
| 38 |
chat_history = chat_history or []
|
| 39 |
|
| 40 |
-
# Build messages for chat-template
|
| 41 |
messages = [
|
| 42 |
{"role": "system", "content": "Enhance and expand the following prompt with more details and context:"},
|
| 43 |
{"role": "user", "content": user_prompt},
|
| 44 |
]
|
| 45 |
|
| 46 |
-
# Use
|
| 47 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 48 |
|
| 49 |
outputs = pipe(
|
|
@@ -63,7 +64,7 @@ def enhance_prompt(user_prompt, temperature, max_tokens, chat_history):
|
|
| 63 |
|
| 64 |
|
| 65 |
# ============================================================
|
| 66 |
-
#
|
| 67 |
# ============================================================
|
| 68 |
with gr.Blocks(title="Prompt Enhancer – Gemma 3 270M", theme=gr.themes.Soft()) as demo:
|
| 69 |
gr.Markdown(
|
|
@@ -103,7 +104,7 @@ with gr.Blocks(title="Prompt Enhancer – Gemma 3 270M", theme=gr.themes.Soft())
|
|
| 103 |
|
| 104 |
|
| 105 |
# ============================================================
|
| 106 |
-
#
|
| 107 |
# ============================================================
|
| 108 |
if __name__ == "__main__":
|
| 109 |
demo.launch(show_error=True)
|
|
|
|
| 3 |
from flashpack.integrations.transformers import FlashPackTransformersModelMixin
|
| 4 |
|
| 5 |
# ============================================================
|
| 6 |
+
# 1️⃣ FlashPack-enabled model class
|
| 7 |
# ============================================================
|
| 8 |
class FlashPackGemmaModel(AutoModelForCausalLM, FlashPackTransformersModelMixin):
|
| 9 |
"""AutoModelForCausalLM extended with FlashPackMixin for fast save/load"""
|
| 10 |
pass
|
| 11 |
|
| 12 |
+
MODEL_ID = "gokaygokay/prompt-enhancer-gemma-3-270m-it"
|
| 13 |
|
| 14 |
# ============================================================
|
| 15 |
+
# 2️⃣ Load model and tokenizer with FlashPack
|
| 16 |
# ============================================================
|
|
|
|
|
|
|
| 17 |
try:
|
| 18 |
+
print("📂 Trying to load model from FlashPack directory...")
|
| 19 |
model = FlashPackGemmaModel.from_pretrained_flashpack("model_flashpack")
|
| 20 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 21 |
except Exception as e:
|
| 22 |
+
print("⚙️ FlashPack model not found, loading from Hugging Face Hub...")
|
| 23 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 24 |
+
# Load Hugging Face model and wrap into FlashPack class
|
| 25 |
+
model = FlashPackGemmaModel.from_pretrained(MODEL_ID)
|
| 26 |
+
# Save for future faster loads
|
| 27 |
model.save_pretrained_flashpack("model_flashpack")
|
| 28 |
print("✅ Model saved as FlashPack for next startup!")
|
| 29 |
|
| 30 |
+
# ============================================================
|
| 31 |
+
# 3️⃣ Create text-generation pipeline
|
| 32 |
+
# ============================================================
|
| 33 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device_map="auto")
|
| 34 |
|
| 35 |
|
| 36 |
# ============================================================
|
| 37 |
+
# 4️⃣ Define prompt enhancement logic
|
| 38 |
# ============================================================
|
| 39 |
def enhance_prompt(user_prompt, temperature, max_tokens, chat_history):
|
| 40 |
chat_history = chat_history or []
|
| 41 |
|
|
|
|
| 42 |
messages = [
|
| 43 |
{"role": "system", "content": "Enhance and expand the following prompt with more details and context:"},
|
| 44 |
{"role": "user", "content": user_prompt},
|
| 45 |
]
|
| 46 |
|
| 47 |
+
# Use chat-template
|
| 48 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 49 |
|
| 50 |
outputs = pipe(
|
|
|
|
| 64 |
|
| 65 |
|
| 66 |
# ============================================================
|
| 67 |
+
# 5️⃣ Gradio Interface
|
| 68 |
# ============================================================
|
| 69 |
with gr.Blocks(title="Prompt Enhancer – Gemma 3 270M", theme=gr.themes.Soft()) as demo:
|
| 70 |
gr.Markdown(
|
|
|
|
| 104 |
|
| 105 |
|
| 106 |
# ============================================================
|
| 107 |
+
# 6️⃣ Launch App
|
| 108 |
# ============================================================
|
| 109 |
if __name__ == "__main__":
|
| 110 |
demo.launch(show_error=True)
|