Update app_flash.py
Browse files- app_flash.py +78 -44
app_flash.py
CHANGED
|
@@ -1,72 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
from transformers import AutoModelForCausalLM, pipeline as hf_pipeline
|
| 5 |
|
| 6 |
# ============================================================
|
| 7 |
-
# 1️⃣ Define FlashPack
|
| 8 |
# ============================================================
|
| 9 |
-
class
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# ============================================================
|
| 14 |
-
# 2️⃣ Load
|
| 15 |
# ============================================================
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
# ============================================================
|
| 22 |
-
#
|
| 23 |
# ============================================================
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
except FileNotFoundError:
|
| 28 |
-
print("⚠️ FlashPack model not found. Loading from HF Hub and uploading FlashPack...")
|
| 29 |
-
model = FlashPackGemmaModel.from_pretrained(MODEL_ID)
|
| 30 |
-
model.save_pretrained_flashpack(FLASHPACK_REPO, push_to_hub=True)
|
| 31 |
-
print(f"✅ FlashPack model uploaded to Hugging Face Hub: {FLASHPACK_REPO}")
|
| 32 |
|
| 33 |
# ============================================================
|
| 34 |
-
#
|
| 35 |
# ============================================================
|
| 36 |
-
|
| 37 |
-
"text-generation",
|
| 38 |
-
model=model,
|
| 39 |
-
tokenizer=tokenizer,
|
| 40 |
-
device_map="auto"
|
| 41 |
-
)
|
| 42 |
|
| 43 |
# ============================================================
|
| 44 |
-
#
|
| 45 |
# ============================================================
|
| 46 |
def enhance_prompt(user_prompt, temperature, max_tokens, chat_history):
|
| 47 |
chat_history = chat_history or []
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
{"role": "user", "content": user_prompt},
|
| 52 |
-
]
|
| 53 |
|
| 54 |
-
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
enhanced = outputs[0]["generated_text"].strip()
|
| 63 |
|
|
|
|
| 64 |
chat_history.append({"role": "user", "content": user_prompt})
|
| 65 |
-
chat_history.append({"role": "assistant", "content":
|
| 66 |
return chat_history
|
| 67 |
|
| 68 |
# ============================================================
|
| 69 |
-
#
|
| 70 |
# ============================================================
|
| 71 |
with gr.Blocks(title="Prompt Enhancer – Gemma 3 270M", theme=gr.themes.Soft()) as demo:
|
| 72 |
gr.Markdown(
|
|
@@ -90,7 +125,6 @@ with gr.Blocks(title="Prompt Enhancer – Gemma 3 270M", theme=gr.themes.Soft())
|
|
| 90 |
send_btn = gr.Button("🚀 Enhance Prompt", variant="primary")
|
| 91 |
clear_btn = gr.Button("🧹 Clear Chat")
|
| 92 |
|
| 93 |
-
# Bind UI actions
|
| 94 |
send_btn.click(enhance_prompt, [user_prompt, temperature, max_tokens, chatbot], chatbot)
|
| 95 |
user_prompt.submit(enhance_prompt, [user_prompt, temperature, max_tokens, chatbot], chatbot)
|
| 96 |
clear_btn.click(lambda: [], None, chatbot)
|
|
@@ -105,7 +139,7 @@ with gr.Blocks(title="Prompt Enhancer – Gemma 3 270M", theme=gr.themes.Soft())
|
|
| 105 |
)
|
| 106 |
|
| 107 |
# ============================================================
|
| 108 |
-
#
|
| 109 |
# ============================================================
|
| 110 |
if __name__ == "__main__":
|
| 111 |
demo.launch(show_error=True)
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.optim as optim
|
| 4 |
+
from flashpack import FlashPackMixin
|
| 5 |
+
from datasets import load_dataset
|
| 6 |
import gradio as gr
|
| 7 |
+
|
| 8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 9 |
|
| 10 |
# ============================================================
|
| 11 |
+
# 1️⃣ Define FlashPack model
|
| 12 |
# ============================================================
|
| 13 |
+
class GemmaTrainer(nn.Module, FlashPackMixin):
|
| 14 |
+
def __init__(self, input_dim=768, hidden_dim=1024, output_dim=768):
|
| 15 |
+
super().__init__()
|
| 16 |
+
self.fc1 = nn.Linear(input_dim, hidden_dim)
|
| 17 |
+
self.relu = nn.ReLU()
|
| 18 |
+
self.fc2 = nn.Linear(hidden_dim, output_dim)
|
| 19 |
+
|
| 20 |
+
def forward(self, x):
|
| 21 |
+
x = self.fc1(x)
|
| 22 |
+
x = self.relu(x)
|
| 23 |
+
x = self.fc2(x)
|
| 24 |
+
return x
|
| 25 |
|
| 26 |
# ============================================================
|
| 27 |
+
# 2️⃣ Load dataset
|
| 28 |
# ============================================================
|
| 29 |
+
dataset = load_dataset("gokaygokay/prompt-enhancer-dataset", split="train")
|
| 30 |
+
|
| 31 |
+
# Example: convert short_prompt and long_prompt to embeddings
|
| 32 |
+
from transformers import AutoTokenizer, AutoModel
|
| 33 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
| 34 |
+
embed_model = AutoModel.from_pretrained("gpt2").to(device)
|
| 35 |
+
|
| 36 |
+
def encode_prompt(prompt):
|
| 37 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding="max_length", max_length=32).to(device)
|
| 38 |
+
with torch.no_grad():
|
| 39 |
+
return embed_model(**inputs).last_hidden_state.mean(dim=1)
|
| 40 |
+
|
| 41 |
+
short_embeddings = torch.vstack([encode_prompt(p["short_prompt"]) for p in dataset])
|
| 42 |
+
long_embeddings = torch.vstack([encode_prompt(p["long_prompt"]) for p in dataset])
|
| 43 |
|
| 44 |
+
# ============================================================
|
| 45 |
+
# 3️⃣ Train FlashPack model
|
| 46 |
+
# ============================================================
|
| 47 |
+
model = GemmaTrainer(input_dim=short_embeddings.shape[1], output_dim=long_embeddings.shape[1]).to(device)
|
| 48 |
+
criterion = nn.MSELoss()
|
| 49 |
+
optimizer = optim.Adam(model.parameters(), lr=1e-3)
|
| 50 |
+
|
| 51 |
+
max_epochs = 1000
|
| 52 |
+
tolerance = 1e-4
|
| 53 |
+
|
| 54 |
+
for epoch in range(max_epochs):
|
| 55 |
+
optimizer.zero_grad()
|
| 56 |
+
outputs = model(short_embeddings)
|
| 57 |
+
loss = criterion(outputs, long_embeddings)
|
| 58 |
+
loss.backward()
|
| 59 |
+
optimizer.step()
|
| 60 |
+
if loss.item() < tolerance:
|
| 61 |
+
print(f"Training converged at epoch {epoch+1}")
|
| 62 |
+
break
|
| 63 |
+
if epoch % 50 == 0:
|
| 64 |
+
print(f"Epoch {epoch+1}, Loss: {loss.item():.6f}")
|
| 65 |
|
| 66 |
# ============================================================
|
| 67 |
+
# 4️⃣ Save to FlashPack Hub
|
| 68 |
# ============================================================
|
| 69 |
+
FLASHPACK_REPO = "rahul7star/FlashPack"
|
| 70 |
+
model.save_flashpack(FLASHPACK_REPO, target_dtype=torch.float32, push_to_hub=True)
|
| 71 |
+
print("✅ Model saved to FlashPack Hub!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
# ============================================================
|
| 74 |
+
# 5️⃣ Load FlashPack model
|
| 75 |
# ============================================================
|
| 76 |
+
loaded_model = model.from_flashpack(FLASHPACK_REPO)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
# ============================================================
|
| 79 |
+
# 6️⃣ Gradio interface
|
| 80 |
# ============================================================
|
| 81 |
def enhance_prompt(user_prompt, temperature, max_tokens, chat_history):
|
| 82 |
chat_history = chat_history or []
|
| 83 |
|
| 84 |
+
# Encode short prompt
|
| 85 |
+
short_emb = encode_prompt(user_prompt)
|
|
|
|
|
|
|
| 86 |
|
| 87 |
+
# Generate expanded embedding via trained model
|
| 88 |
+
with torch.no_grad():
|
| 89 |
+
long_emb = loaded_model(short_emb)
|
| 90 |
|
| 91 |
+
# Decode embedding back to text (approximate via nearest training example)
|
| 92 |
+
# Simple approach: cosine similarity to long_embeddings
|
| 93 |
+
cos = nn.CosineSimilarity(dim=1)
|
| 94 |
+
sims = cos(long_emb.repeat(len(long_embeddings),1), long_embeddings)
|
| 95 |
+
best_idx = sims.argmax()
|
| 96 |
+
enhanced_prompt = dataset[best_idx]["long_prompt"]
|
|
|
|
| 97 |
|
| 98 |
+
# Update chat history
|
| 99 |
chat_history.append({"role": "user", "content": user_prompt})
|
| 100 |
+
chat_history.append({"role": "assistant", "content": enhanced_prompt})
|
| 101 |
return chat_history
|
| 102 |
|
| 103 |
# ============================================================
|
| 104 |
+
# 7️⃣ Gradio UI
|
| 105 |
# ============================================================
|
| 106 |
with gr.Blocks(title="Prompt Enhancer – Gemma 3 270M", theme=gr.themes.Soft()) as demo:
|
| 107 |
gr.Markdown(
|
|
|
|
| 125 |
send_btn = gr.Button("🚀 Enhance Prompt", variant="primary")
|
| 126 |
clear_btn = gr.Button("🧹 Clear Chat")
|
| 127 |
|
|
|
|
| 128 |
send_btn.click(enhance_prompt, [user_prompt, temperature, max_tokens, chatbot], chatbot)
|
| 129 |
user_prompt.submit(enhance_prompt, [user_prompt, temperature, max_tokens, chatbot], chatbot)
|
| 130 |
clear_btn.click(lambda: [], None, chatbot)
|
|
|
|
| 139 |
)
|
| 140 |
|
| 141 |
# ============================================================
|
| 142 |
+
# 8️⃣ Launch
|
| 143 |
# ============================================================
|
| 144 |
if __name__ == "__main__":
|
| 145 |
demo.launch(show_error=True)
|