Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from PyPDF2 import PdfReader
|
| 3 |
+
from sentence_transformers import SentenceTransformer
|
| 4 |
+
from transformers import pipeline
|
| 5 |
+
import faiss
|
| 6 |
+
import numpy as np
|
| 7 |
+
|
| 8 |
+
# Load PDF and extract text
|
| 9 |
+
@st.cache_data
|
| 10 |
+
def load_pdf_text(pdf_path):
|
| 11 |
+
reader = PdfReader(pdf_path)
|
| 12 |
+
text = ''
|
| 13 |
+
for page in reader.pages:
|
| 14 |
+
text += page.extract_text()
|
| 15 |
+
return text
|
| 16 |
+
|
| 17 |
+
# Split text into chunks
|
| 18 |
+
def chunk_text(text, max_len=500):
|
| 19 |
+
sentences = text.split('. ')
|
| 20 |
+
chunks, chunk = [], ''
|
| 21 |
+
for sentence in sentences:
|
| 22 |
+
if len(chunk) + len(sentence) <= max_len:
|
| 23 |
+
chunk += sentence + '. '
|
| 24 |
+
else:
|
| 25 |
+
chunks.append(chunk.strip())
|
| 26 |
+
chunk = sentence + '. '
|
| 27 |
+
chunks.append(chunk.strip())
|
| 28 |
+
return chunks
|
| 29 |
+
|
| 30 |
+
# Embed text using SentenceTransformer
|
| 31 |
+
@st.cache_resource
|
| 32 |
+
def embed_chunks(chunks):
|
| 33 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 34 |
+
embeddings = model.encode(chunks)
|
| 35 |
+
return embeddings, model
|
| 36 |
+
|
| 37 |
+
# RAG-style QA using FAISS and Transformers
|
| 38 |
+
def answer_query(query, embeddings, chunks, model, qa_pipeline):
|
| 39 |
+
query_embedding = model.encode([query])
|
| 40 |
+
index = faiss.IndexFlatL2(embeddings.shape[1])
|
| 41 |
+
index.add(np.array(embeddings))
|
| 42 |
+
_, I = index.search(np.array(query_embedding), k=3)
|
| 43 |
+
context = "\n".join([chunks[i] for i in I[0]])
|
| 44 |
+
result = qa_pipeline(question=query, context=context)
|
| 45 |
+
return result['answer']
|
| 46 |
+
|
| 47 |
+
# Streamlit UI
|
| 48 |
+
st.title("📄 PDF QA with RAG")
|
| 49 |
+
uploaded_file = st.file_uploader("Upload a PDF", type=["pdf"])
|
| 50 |
+
|
| 51 |
+
if uploaded_file:
|
| 52 |
+
with open("document.pdf", "wb") as f:
|
| 53 |
+
f.write(uploaded_file.read())
|
| 54 |
+
|
| 55 |
+
raw_text = load_pdf_text("document.pdf")
|
| 56 |
+
chunks = chunk_text(raw_text)
|
| 57 |
+
embeddings, embedder = embed_chunks(chunks)
|
| 58 |
+
qa = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
|
| 59 |
+
|
| 60 |
+
query = st.text_input("Ask a question about the PDF:")
|
| 61 |
+
if query:
|
| 62 |
+
answer = answer_query(query, embeddings, chunks, embedder, qa)
|
| 63 |
+
st.success(f"Answer: {answer}")
|