Update app.py
Browse files
app.py
CHANGED
|
@@ -23,7 +23,7 @@ warnings.filterwarnings("ignore")
|
|
| 23 |
MODEL_NAME = "microsoft/codebert-base"
|
| 24 |
MAX_LENGTH = 512
|
| 25 |
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 26 |
-
DATASET_PATH = "archive (1).zip"
|
| 27 |
|
| 28 |
# Initialize models with caching
|
| 29 |
@st.cache_resource
|
|
@@ -39,36 +39,30 @@ def load_models():
|
|
| 39 |
@st.cache_resource
|
| 40 |
def load_dataset():
|
| 41 |
try:
|
| 42 |
-
# Extract dataset if needed
|
| 43 |
if not os.path.exists("Subject_CloneTypes_Directories"):
|
| 44 |
with zipfile.ZipFile(DATASET_PATH, 'r') as zip_ref:
|
| 45 |
zip_ref.extractall(".")
|
| 46 |
|
| 47 |
-
# Load sample pairs (modify this based on your dataset structure)
|
| 48 |
clone_pairs = []
|
| 49 |
base_path = "Subject_CloneTypes_Directories"
|
| 50 |
|
| 51 |
-
# Example: Load one pair from each clone type
|
| 52 |
for clone_type in ["Clone_Type1", "Clone_Type2", "Clone_Type3 - ST"]:
|
| 53 |
type_path = os.path.join(base_path, clone_type)
|
| 54 |
if os.path.exists(type_path):
|
| 55 |
for root, _, files in os.walk(type_path):
|
| 56 |
-
if files:
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
})
|
| 68 |
-
break # Just take one pair per type for demo
|
| 69 |
-
|
| 70 |
-
return clone_pairs[:10] # Return first 10 pairs for demo
|
| 71 |
|
|
|
|
| 72 |
except Exception as e:
|
| 73 |
st.error(f"Error loading dataset: {str(e)}")
|
| 74 |
return []
|
|
@@ -76,17 +70,15 @@ def load_dataset():
|
|
| 76 |
tokenizer, code_model = load_models()
|
| 77 |
dataset_pairs = load_dataset()
|
| 78 |
|
| 79 |
-
# Normalization function
|
| 80 |
def normalize_code(code):
|
| 81 |
try:
|
| 82 |
-
code = re.sub(r'//.*', '', code)
|
| 83 |
-
code = re.sub(r'/\*.*?\*/', '', code, flags=re.DOTALL)
|
| 84 |
-
code = re.sub(r'\s+', ' ', code).strip()
|
| 85 |
return code
|
| 86 |
except Exception:
|
| 87 |
return code
|
| 88 |
|
| 89 |
-
# Embedding generation
|
| 90 |
def get_embedding(code):
|
| 91 |
try:
|
| 92 |
code = normalize_code(code)
|
|
@@ -101,12 +93,11 @@ def get_embedding(code):
|
|
| 101 |
with torch.no_grad():
|
| 102 |
outputs = code_model(**inputs)
|
| 103 |
|
| 104 |
-
return outputs.last_hidden_state.mean(dim=1)
|
| 105 |
except Exception as e:
|
| 106 |
st.error(f"Error processing code: {str(e)}")
|
| 107 |
return None
|
| 108 |
|
| 109 |
-
# Comparison function
|
| 110 |
def compare_code(code1, code2):
|
| 111 |
if not code1 or not code2:
|
| 112 |
return None
|
|
@@ -125,9 +116,7 @@ def compare_code(code1, code2):
|
|
| 125 |
|
| 126 |
# UI Elements
|
| 127 |
st.title("π Java Code Clone Detector (IJaDataset 2.1)")
|
| 128 |
-
st.markdown(""
|
| 129 |
-
Compare Java code snippets from the IJaDataset 2.1 using CodeBERT embeddings.
|
| 130 |
-
""")
|
| 131 |
|
| 132 |
# Dataset selector
|
| 133 |
selected_pair = None
|
|
@@ -154,52 +143,51 @@ with col2:
|
|
| 154 |
value=selected_pair["code2"] if selected_pair else "",
|
| 155 |
help="Enter the second Java code snippet"
|
| 156 |
)
|
| 157 |
-
|
| 158 |
threshold = st.slider(
|
| 159 |
"Clone Detection Threshold",
|
| 160 |
min_value=0.50,
|
| 161 |
max_value=1.00,
|
| 162 |
-
value=0.75,
|
| 163 |
step=0.01,
|
| 164 |
help="Similarity score needed to consider code as cloned (0.5-1.0)"
|
| 165 |
)
|
| 166 |
|
| 167 |
-
#
|
| 168 |
-
if
|
| 169 |
-
|
| 170 |
-
is_clone = similarity >= threshold
|
| 171 |
-
|
| 172 |
-
st.subheader("Results")
|
| 173 |
-
col1, col2, col3 = st.columns(3)
|
| 174 |
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
# Visual clone decision
|
| 184 |
-
st.metric(
|
| 185 |
"Verdict",
|
| 186 |
"β
CLONE" if is_clone else "β NOT CLONE",
|
| 187 |
delta=f"{similarity-threshold:+.3f}",
|
| 188 |
help=f"Score {'β₯' if is_clone else '<'} threshold"
|
| 189 |
)
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
""
|
| 202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
st.markdown("---")
|
| 204 |
st.markdown("""
|
| 205 |
**Dataset Information**:
|
|
|
|
| 23 |
MODEL_NAME = "microsoft/codebert-base"
|
| 24 |
MAX_LENGTH = 512
|
| 25 |
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 26 |
+
DATASET_PATH = "archive (1).zip"
|
| 27 |
|
| 28 |
# Initialize models with caching
|
| 29 |
@st.cache_resource
|
|
|
|
| 39 |
@st.cache_resource
|
| 40 |
def load_dataset():
|
| 41 |
try:
|
|
|
|
| 42 |
if not os.path.exists("Subject_CloneTypes_Directories"):
|
| 43 |
with zipfile.ZipFile(DATASET_PATH, 'r') as zip_ref:
|
| 44 |
zip_ref.extractall(".")
|
| 45 |
|
|
|
|
| 46 |
clone_pairs = []
|
| 47 |
base_path = "Subject_CloneTypes_Directories"
|
| 48 |
|
|
|
|
| 49 |
for clone_type in ["Clone_Type1", "Clone_Type2", "Clone_Type3 - ST"]:
|
| 50 |
type_path = os.path.join(base_path, clone_type)
|
| 51 |
if os.path.exists(type_path):
|
| 52 |
for root, _, files in os.walk(type_path):
|
| 53 |
+
if files and len(files) >= 2:
|
| 54 |
+
with open(os.path.join(root, files[0]), 'r', encoding='utf-8') as f1:
|
| 55 |
+
code1 = f1.read()
|
| 56 |
+
with open(os.path.join(root, files[1]), 'r', encoding='utf-8') as f2:
|
| 57 |
+
code2 = f2.read()
|
| 58 |
+
clone_pairs.append({
|
| 59 |
+
"type": clone_type,
|
| 60 |
+
"code1": code1,
|
| 61 |
+
"code2": code2
|
| 62 |
+
})
|
| 63 |
+
break
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
return clone_pairs[:10]
|
| 66 |
except Exception as e:
|
| 67 |
st.error(f"Error loading dataset: {str(e)}")
|
| 68 |
return []
|
|
|
|
| 70 |
tokenizer, code_model = load_models()
|
| 71 |
dataset_pairs = load_dataset()
|
| 72 |
|
|
|
|
| 73 |
def normalize_code(code):
|
| 74 |
try:
|
| 75 |
+
code = re.sub(r'//.*', '', code)
|
| 76 |
+
code = re.sub(r'/\*.*?\*/', '', code, flags=re.DOTALL)
|
| 77 |
+
code = re.sub(r'\s+', ' ', code).strip()
|
| 78 |
return code
|
| 79 |
except Exception:
|
| 80 |
return code
|
| 81 |
|
|
|
|
| 82 |
def get_embedding(code):
|
| 83 |
try:
|
| 84 |
code = normalize_code(code)
|
|
|
|
| 93 |
with torch.no_grad():
|
| 94 |
outputs = code_model(**inputs)
|
| 95 |
|
| 96 |
+
return outputs.last_hidden_state.mean(dim=1)
|
| 97 |
except Exception as e:
|
| 98 |
st.error(f"Error processing code: {str(e)}")
|
| 99 |
return None
|
| 100 |
|
|
|
|
| 101 |
def compare_code(code1, code2):
|
| 102 |
if not code1 or not code2:
|
| 103 |
return None
|
|
|
|
| 116 |
|
| 117 |
# UI Elements
|
| 118 |
st.title("π Java Code Clone Detector (IJaDataset 2.1)")
|
| 119 |
+
st.markdown("Compare Java code snippets from the IJaDataset 2.1 using CodeBERT embeddings.")
|
|
|
|
|
|
|
| 120 |
|
| 121 |
# Dataset selector
|
| 122 |
selected_pair = None
|
|
|
|
| 143 |
value=selected_pair["code2"] if selected_pair else "",
|
| 144 |
help="Enter the second Java code snippet"
|
| 145 |
)
|
| 146 |
+
|
| 147 |
threshold = st.slider(
|
| 148 |
"Clone Detection Threshold",
|
| 149 |
min_value=0.50,
|
| 150 |
max_value=1.00,
|
| 151 |
+
value=0.75,
|
| 152 |
step=0.01,
|
| 153 |
help="Similarity score needed to consider code as cloned (0.5-1.0)"
|
| 154 |
)
|
| 155 |
|
| 156 |
+
# Only perform comparison when button is clicked
|
| 157 |
+
if st.button("Compare Code"):
|
| 158 |
+
similarity = compare_code(code1, code2)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
|
| 160 |
+
if similarity is not None:
|
| 161 |
+
is_clone = similarity >= threshold
|
| 162 |
+
|
| 163 |
+
st.subheader("Results")
|
| 164 |
+
cols = st.columns(3)
|
| 165 |
+
cols[0].metric("Similarity Score", f"{similarity:.3f}")
|
| 166 |
+
cols[1].metric("Current Threshold", f"{threshold:.3f}")
|
| 167 |
+
cols[2].metric(
|
|
|
|
|
|
|
| 168 |
"Verdict",
|
| 169 |
"β
CLONE" if is_clone else "β NOT CLONE",
|
| 170 |
delta=f"{similarity-threshold:+.3f}",
|
| 171 |
help=f"Score {'β₯' if is_clone else '<'} threshold"
|
| 172 |
)
|
| 173 |
+
|
| 174 |
+
st.progress(similarity)
|
| 175 |
+
|
| 176 |
+
with st.expander("Interpretation Guide"):
|
| 177 |
+
st.markdown("""
|
| 178 |
+
- **> 0.95**: Nearly identical (Type-1 clone)
|
| 179 |
+
- **0.85-0.95**: Very similar (Type-2 clone)
|
| 180 |
+
- **0.70-0.85**: Similar structure (Type-3 clone)
|
| 181 |
+
- **< 0.70**: Different code
|
| 182 |
+
""")
|
| 183 |
+
|
| 184 |
+
with st.expander("Show normalized code"):
|
| 185 |
+
tab1, tab2 = st.tabs(["First Code", "Second Code"])
|
| 186 |
+
with tab1:
|
| 187 |
+
st.code(normalize_code(code1))
|
| 188 |
+
with tab2:
|
| 189 |
+
st.code(normalize_code(code2))
|
| 190 |
+
|
| 191 |
st.markdown("---")
|
| 192 |
st.markdown("""
|
| 193 |
**Dataset Information**:
|