Update app.py
Browse files
app.py
CHANGED
|
@@ -1,102 +1,192 @@
|
|
|
|
|
| 1 |
import javalang
|
| 2 |
import torch
|
| 3 |
-
import torch.nn as nn
|
| 4 |
import torch.nn.functional as F
|
| 5 |
import re
|
| 6 |
-
import gradio as gr
|
| 7 |
from transformers import AutoTokenizer, AutoModel
|
| 8 |
-
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base")
|
| 17 |
-
code_model = AutoModel.from_pretrained("microsoft/codebert-base").to(DEVICE)
|
| 18 |
-
|
| 19 |
-
# Simplified model architecture
|
| 20 |
-
class CloneDetector(nn.Module):
|
| 21 |
-
def __init__(self, hidden_dim):
|
| 22 |
-
super().__init__()
|
| 23 |
-
self.classifier = nn.Sequential(
|
| 24 |
-
nn.Linear(hidden_dim * 2, hidden_dim),
|
| 25 |
-
nn.ReLU(),
|
| 26 |
-
nn.Linear(hidden_dim, 2))
|
| 27 |
-
|
| 28 |
-
def forward(self, emb1, emb2):
|
| 29 |
-
combined = torch.cat([emb1, emb2], dim=-1)
|
| 30 |
-
return self.classifier(combined)
|
| 31 |
|
| 32 |
-
|
|
|
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
code = re.sub(r'//.*', '', code)
|
| 39 |
-
code = re.sub(r'/\*.*?\*/', '', code, flags=re.DOTALL)
|
| 40 |
-
code = ' '.join(code.split())
|
| 41 |
-
|
| 42 |
-
# Tokenize and get embedding
|
| 43 |
-
inputs = tokenizer(code, return_tensors="pt", truncation=True, max_length=512).to(DEVICE)
|
| 44 |
-
with torch.no_grad():
|
| 45 |
-
outputs = code_model(**inputs)
|
| 46 |
-
return outputs.last_hidden_state.mean(dim=1) # Pooled representation
|
| 47 |
-
except Exception:
|
| 48 |
-
return torch.zeros(1, 768).to(DEVICE)
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
|
|
|
| 52 |
try:
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
# Calculate similarity
|
| 58 |
-
with torch.no_grad():
|
| 59 |
-
sim_score = F.cosine_similarity(emb1, emb2).item()
|
| 60 |
-
logits = model(emb1, emb2)
|
| 61 |
-
prob = F.softmax(logits, dim=-1)[0, 1].item()
|
| 62 |
-
|
| 63 |
-
return {
|
| 64 |
-
"Similarity Score": f"{sim_score:.3f}",
|
| 65 |
-
"Clone Probability": f"{prob:.3f}",
|
| 66 |
-
"Prediction": "Clone" if prob > 0.5 else "Not Clone"
|
| 67 |
-
}
|
| 68 |
except Exception as e:
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
| 81 |
public static void main(String[] args) {
|
| 82 |
System.out.println("Hello, World!");
|
| 83 |
}
|
| 84 |
-
}"""
|
| 85 |
-
|
|
|
|
| 86 |
public static void main(String[] args) {
|
| 87 |
System.out.println("Hello, World!");
|
| 88 |
}
|
| 89 |
-
}"""
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
)
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
import javalang
|
| 3 |
import torch
|
|
|
|
| 4 |
import torch.nn.functional as F
|
| 5 |
import re
|
|
|
|
| 6 |
from transformers import AutoTokenizer, AutoModel
|
| 7 |
+
import warnings
|
| 8 |
|
| 9 |
+
# Set up page config
|
| 10 |
+
st.set_page_config(
|
| 11 |
+
page_title="Java Code Clone Detector",
|
| 12 |
+
page_icon="🔍",
|
| 13 |
+
layout="wide"
|
| 14 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
# Suppress warnings
|
| 17 |
+
warnings.filterwarnings("ignore")
|
| 18 |
|
| 19 |
+
# Constants
|
| 20 |
+
MODEL_NAME = "microsoft/codebert-base"
|
| 21 |
+
MAX_LENGTH = 512
|
| 22 |
+
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
# Initialize models with caching
|
| 25 |
+
@st.cache_resource
|
| 26 |
+
def load_models():
|
| 27 |
try:
|
| 28 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 29 |
+
model = AutoModel.from_pretrained(MODEL_NAME).to(DEVICE)
|
| 30 |
+
return tokenizer, model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
except Exception as e:
|
| 32 |
+
st.error(f"Failed to load models: {str(e)}")
|
| 33 |
+
return None, None
|
| 34 |
+
|
| 35 |
+
tokenizer, code_model = load_models()
|
| 36 |
+
|
| 37 |
+
# UI Elements
|
| 38 |
+
st.title("🔍 Java Code Clone Detector")
|
| 39 |
+
st.markdown("""
|
| 40 |
+
Compare two Java code snippets to detect potential clones using CodeBERT embeddings.
|
| 41 |
+
The similarity score ranges from 0 (completely different) to 1 (identical).
|
| 42 |
+
""")
|
| 43 |
+
|
| 44 |
+
# Example code
|
| 45 |
+
EXAMPLE_1 = """public class Hello {
|
| 46 |
public static void main(String[] args) {
|
| 47 |
System.out.println("Hello, World!");
|
| 48 |
}
|
| 49 |
+
}"""
|
| 50 |
+
|
| 51 |
+
EXAMPLE_2 = """public class Greet {
|
| 52 |
public static void main(String[] args) {
|
| 53 |
System.out.println("Hello, World!");
|
| 54 |
}
|
| 55 |
+
}"""
|
| 56 |
+
|
| 57 |
+
# Layout
|
| 58 |
+
col1, col2 = st.columns(2)
|
| 59 |
+
|
| 60 |
+
with col1:
|
| 61 |
+
code1 = st.text_area(
|
| 62 |
+
"First Java Code",
|
| 63 |
+
height=300,
|
| 64 |
+
value=EXAMPLE_1,
|
| 65 |
+
help="Enter the first Java code snippet"
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
with col2:
|
| 69 |
+
code2 = st.text_area(
|
| 70 |
+
"Second Java Code",
|
| 71 |
+
height=300,
|
| 72 |
+
value=EXAMPLE_2,
|
| 73 |
+
help="Enter the second Java code snippet"
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
# Threshold slider
|
| 77 |
+
threshold = st.slider(
|
| 78 |
+
"Clone Detection Threshold",
|
| 79 |
+
min_value=0.5,
|
| 80 |
+
max_value=1.0,
|
| 81 |
+
value=0.85,
|
| 82 |
+
step=0.01,
|
| 83 |
+
help="Adjust the similarity threshold for clone detection"
|
| 84 |
)
|
| 85 |
|
| 86 |
+
# Normalization function
|
| 87 |
+
def normalize_code(code):
|
| 88 |
+
try:
|
| 89 |
+
code = re.sub(r'//.*', '', code) # Remove single-line comments
|
| 90 |
+
code = re.sub(r'/\*.*?\*/', '', code, flags=re.DOTALL) # Multi-line comments
|
| 91 |
+
code = re.sub(r'\s+', ' ', code).strip() # Normalize whitespace
|
| 92 |
+
return code
|
| 93 |
+
except Exception:
|
| 94 |
+
return code
|
| 95 |
+
|
| 96 |
+
# Embedding generation
|
| 97 |
+
def get_embedding(code):
|
| 98 |
+
try:
|
| 99 |
+
code = normalize_code(code)
|
| 100 |
+
inputs = tokenizer(
|
| 101 |
+
code,
|
| 102 |
+
return_tensors="pt",
|
| 103 |
+
truncation=True,
|
| 104 |
+
max_length=MAX_LENGTH,
|
| 105 |
+
padding='max_length'
|
| 106 |
+
).to(DEVICE)
|
| 107 |
+
|
| 108 |
+
with torch.no_grad():
|
| 109 |
+
outputs = code_model(**inputs)
|
| 110 |
+
|
| 111 |
+
return outputs.last_hidden_state.mean(dim=1) # Pooled embedding
|
| 112 |
+
except Exception as e:
|
| 113 |
+
st.error(f"Error processing code: {str(e)}")
|
| 114 |
+
return None
|
| 115 |
+
|
| 116 |
+
# Comparison function
|
| 117 |
+
def compare_code(code1, code2):
|
| 118 |
+
if not code1 or not code2:
|
| 119 |
+
return None
|
| 120 |
+
|
| 121 |
+
with st.spinner('Analyzing code...'):
|
| 122 |
+
emb1 = get_embedding(code1)
|
| 123 |
+
emb2 = get_embedding(code2)
|
| 124 |
+
|
| 125 |
+
if emb1 is None or emb2 is None:
|
| 126 |
+
return None
|
| 127 |
+
|
| 128 |
+
with torch.no_grad():
|
| 129 |
+
similarity = F.cosine_similarity(emb1, emb2).item()
|
| 130 |
+
|
| 131 |
+
return similarity
|
| 132 |
+
|
| 133 |
+
# Compare button
|
| 134 |
+
if st.button("Compare Code", type="primary"):
|
| 135 |
+
if tokenizer is None or code_model is None:
|
| 136 |
+
st.error("Models failed to load. Please check the logs.")
|
| 137 |
+
else:
|
| 138 |
+
similarity = compare_code(code1, code2)
|
| 139 |
+
|
| 140 |
+
if similarity is not None:
|
| 141 |
+
# Display results
|
| 142 |
+
st.subheader("Results")
|
| 143 |
+
|
| 144 |
+
# Progress bar for visualization
|
| 145 |
+
st.progress(similarity)
|
| 146 |
+
|
| 147 |
+
# Metrics columns
|
| 148 |
+
col1, col2, col3 = st.columns(3)
|
| 149 |
+
|
| 150 |
+
with col1:
|
| 151 |
+
st.metric("Similarity Score", f"{similarity:.3f}")
|
| 152 |
+
|
| 153 |
+
with col2:
|
| 154 |
+
st.metric("Threshold", f"{threshold:.3f}")
|
| 155 |
+
|
| 156 |
+
with col3:
|
| 157 |
+
is_clone = similarity >= threshold
|
| 158 |
+
st.metric(
|
| 159 |
+
"Clone Detection",
|
| 160 |
+
"✅ Clone" if is_clone else "❌ Not a Clone",
|
| 161 |
+
delta=f"{similarity-threshold:+.3f}"
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
# Interpretation
|
| 165 |
+
if similarity > 0.95:
|
| 166 |
+
st.success("The code snippets are nearly identical (potential Type-1 clone)")
|
| 167 |
+
elif similarity > 0.85:
|
| 168 |
+
st.success("The code snippets are very similar (potential Type-2 clone)")
|
| 169 |
+
elif similarity > 0.7:
|
| 170 |
+
st.warning("The code snippets show some similarity (potential Type-3 clone)")
|
| 171 |
+
else:
|
| 172 |
+
st.info("The code snippets are significantly different")
|
| 173 |
+
|
| 174 |
+
# Show normalized code for debugging
|
| 175 |
+
with st.expander("Show normalized code"):
|
| 176 |
+
tab1, tab2 = st.tabs(["First Code", "Second Code"])
|
| 177 |
+
|
| 178 |
+
with tab1:
|
| 179 |
+
st.code(normalize_code(code1))
|
| 180 |
+
|
| 181 |
+
with tab2:
|
| 182 |
+
st.code(normalize_code(code2))
|
| 183 |
+
|
| 184 |
+
# Footer
|
| 185 |
+
st.markdown("---")
|
| 186 |
+
st.markdown("""
|
| 187 |
+
**How it works**:
|
| 188 |
+
1. Code is normalized (comments removed, whitespace standardized)
|
| 189 |
+
2. CodeBERT generates embeddings for each snippet
|
| 190 |
+
3. Cosine similarity is calculated between embeddings
|
| 191 |
+
4. Results are compared against your threshold
|
| 192 |
+
""")
|