Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,22 +1,32 @@
|
|
| 1 |
-
#!/usr/bin/env python
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
import gradio as gr
|
|
|
|
|
|
|
| 8 |
import numpy as np
|
| 9 |
-
from
|
|
|
|
| 10 |
import spaces
|
| 11 |
-
import
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
DESCRIPTION = """
|
| 15 |
-
# Juggernaut X v10
|
| 16 |
-
"""
|
| 17 |
|
| 18 |
def save_image(img):
|
| 19 |
-
unique_name = str(uuid.uuid4()) + ".
|
| 20 |
img.save(unique_name)
|
| 21 |
return unique_name
|
| 22 |
|
|
@@ -26,34 +36,37 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
| 26 |
return seed
|
| 27 |
|
| 28 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
| 29 |
|
| 30 |
-
if not torch.cuda.is_available():
|
| 31 |
-
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
|
| 32 |
-
|
| 33 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
|
| 39 |
-
|
| 40 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 41 |
"RunDiffusion/Juggernaut-X-v10",
|
| 42 |
-
|
|
|
|
| 43 |
)
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
#pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
|
| 48 |
-
#pipe.set_adapters("dalle")
|
| 49 |
|
| 50 |
-
pipe.to("cuda")
|
| 51 |
-
|
| 52 |
-
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
negative_prompt: str = "",
|
| 58 |
use_negative_prompt: bool = False,
|
| 59 |
num_inference_steps: int = 30,
|
|
@@ -65,15 +78,22 @@ def generate(
|
|
| 65 |
randomize_seed: bool = False,
|
| 66 |
progress=gr.Progress(track_tqdm=True),
|
| 67 |
):
|
| 68 |
-
|
| 69 |
-
|
| 70 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 71 |
-
|
| 72 |
if not use_negative_prompt:
|
| 73 |
-
negative_prompt = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
|
| 76 |
-
prompt=prompt,
|
| 77 |
negative_prompt=negative_prompt,
|
| 78 |
width=width,
|
| 79 |
height=height,
|
|
@@ -83,42 +103,35 @@ def generate(
|
|
| 83 |
cross_attention_kwargs={"scale": 0.65},
|
| 84 |
output_type="pil",
|
| 85 |
).images
|
| 86 |
-
|
| 87 |
-
print(image_paths)
|
| 88 |
-
return image_paths, seed
|
| 89 |
-
|
| 90 |
-
examples = [
|
| 91 |
-
"neon holography crystal cat",
|
| 92 |
-
"a cat eating a piece of cheese",
|
| 93 |
-
"an astronaut riding a horse in space",
|
| 94 |
-
"a cartoon of a boy playing with a tiger",
|
| 95 |
-
"a cute robot artist painting on an easel, concept art",
|
| 96 |
-
"a close up of a woman wearing a transparent, prismatic, elaborate nemeses headdress, over the should pose, brown skin-tone"
|
| 97 |
-
]
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
max_lines=1,
|
| 117 |
-
placeholder="Enter your prompt",
|
| 118 |
-
container=False,
|
| 119 |
-
)
|
| 120 |
-
run_button = gr.Button("Run", scale=0)
|
| 121 |
-
result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False)
|
| 122 |
with gr.Accordion("Advanced options", open=False):
|
| 123 |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
| 124 |
negative_prompt = gr.Text(
|
|
@@ -178,46 +191,47 @@ with gr.Blocks(css=css) as demo:
|
|
| 178 |
value=6,
|
| 179 |
)
|
| 180 |
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
)
|
| 190 |
-
|
| 191 |
use_negative_prompt.change(
|
| 192 |
fn=lambda x: gr.update(visible=x),
|
| 193 |
inputs=use_negative_prompt,
|
| 194 |
outputs=negative_prompt,
|
| 195 |
api_name=False,
|
| 196 |
)
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
],
|
| 205 |
-
fn=generate,
|
| 206 |
-
inputs=[
|
| 207 |
-
prompt,
|
| 208 |
-
negative_prompt,
|
| 209 |
-
use_negative_prompt,
|
| 210 |
-
num_inference_steps,
|
| 211 |
-
num_images_per_prompt,
|
| 212 |
-
seed,
|
| 213 |
-
width,
|
| 214 |
-
height,
|
| 215 |
-
guidance_scale,
|
| 216 |
-
randomize_seed,
|
| 217 |
-
],
|
| 218 |
-
outputs=[result, seed],
|
| 219 |
-
api_name="run",
|
| 220 |
)
|
| 221 |
-
|
| 222 |
if __name__ == "__main__":
|
| 223 |
demo.queue(max_size=20).launch(show_api=False, debug=False)
|
|
|
|
|
|
|
| 1 |
|
| 2 |
+
if torch.cuda.is_available():
|
| 3 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 4 |
+
"RunDiffusion/Juggernaut-X-v10",
|
| 5 |
+
torch_dtype=torch.float16
|
| 6 |
+
)
|
| 7 |
+
#pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
#pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
|
| 11 |
+
#pipe.set_adapters("dalle")
|
| 12 |
+
|
| 13 |
+
pipe.to("cuda")
|
| 14 |
+
|
| 15 |
+
|
| 16 |
|
| 17 |
import gradio as gr
|
| 18 |
+
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler, LCMScheduler, AutoencoderKL,DiffusionPipeline
|
| 19 |
+
import torch
|
| 20 |
import numpy as np
|
| 21 |
+
from huggingface_hub import hf_hub_download
|
| 22 |
+
from safetensors.torch import load_file
|
| 23 |
import spaces
|
| 24 |
+
import os
|
| 25 |
+
import random
|
| 26 |
+
import uuid
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
def save_image(img):
|
| 29 |
+
unique_name = str(uuid.uuid4()) + ".png"
|
| 30 |
img.save(unique_name)
|
| 31 |
return unique_name
|
| 32 |
|
|
|
|
| 36 |
return seed
|
| 37 |
|
| 38 |
MAX_SEED = np.iinfo(np.int32).max
|
| 39 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
JX_pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 43 |
+
"RunDiffusion/Juggernaut-X-Hyper",
|
| 44 |
+
vae=vae,
|
| 45 |
+
torch_dtype=torch.float16,
|
| 46 |
+
)
|
| 47 |
+
JX_pipe.to("cuda")
|
| 48 |
|
| 49 |
|
| 50 |
+
J10_pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
|
|
| 51 |
"RunDiffusion/Juggernaut-X-v10",
|
| 52 |
+
vae=vae,
|
| 53 |
+
torch_dtype=torch.float16,
|
| 54 |
)
|
| 55 |
+
J10_pipe.to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
J9_pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 59 |
+
"RunDiffusion/Juggernaut-X-v10",
|
| 60 |
+
vae=vae,
|
| 61 |
+
torch_dtype=torch.float16,
|
| 62 |
+
use_safetensors=True,
|
| 63 |
+
add_watermarker=False,
|
| 64 |
+
variant="fp16"
|
| 65 |
+
)
|
| 66 |
+
J9_pipe.to("cuda")
|
| 67 |
+
|
| 68 |
+
@spaces.GPU
|
| 69 |
+
def run_comparison(prompt: str,
|
| 70 |
negative_prompt: str = "",
|
| 71 |
use_negative_prompt: bool = False,
|
| 72 |
num_inference_steps: int = 30,
|
|
|
|
| 78 |
randomize_seed: bool = False,
|
| 79 |
progress=gr.Progress(track_tqdm=True),
|
| 80 |
):
|
|
|
|
|
|
|
| 81 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
|
|
|
| 82 |
if not use_negative_prompt:
|
| 83 |
+
negative_prompt = ""
|
| 84 |
+
image_r3 = JX_pipe(prompt=prompt,
|
| 85 |
+
negative_prompt=negative_prompt,
|
| 86 |
+
width=width,
|
| 87 |
+
height=height,
|
| 88 |
+
guidance_scale=guidance_scale,
|
| 89 |
+
num_inference_steps=num_inference_steps,
|
| 90 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 91 |
+
cross_attention_kwargs={"scale": 0.65},
|
| 92 |
+
output_type="pil",
|
| 93 |
+
).images
|
| 94 |
+
image_paths_r3 = [save_image(img) for img in image_r3]
|
| 95 |
|
| 96 |
+
image_r4 = JX10_pipe(prompt=prompt,
|
|
|
|
| 97 |
negative_prompt=negative_prompt,
|
| 98 |
width=width,
|
| 99 |
height=height,
|
|
|
|
| 103 |
cross_attention_kwargs={"scale": 0.65},
|
| 104 |
output_type="pil",
|
| 105 |
).images
|
| 106 |
+
image_paths_r4 = [save_image(img) for img in image_r4]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
+
image_r5 = JX9_pipe(prompt=prompt,
|
| 109 |
+
negative_prompt=negative_prompt,
|
| 110 |
+
width=width,
|
| 111 |
+
height=height,
|
| 112 |
+
guidance_scale=guidance_scale,
|
| 113 |
+
num_inference_steps=num_inference_steps,
|
| 114 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 115 |
+
cross_attention_kwargs={"scale": 0.65},
|
| 116 |
+
output_type="pil",
|
| 117 |
+
).images
|
| 118 |
+
image_paths_r5 = [save_image(img) for img in image_r5]
|
| 119 |
+
return image_paths_r3, image_paths_r4,image_paths_r5, seed
|
| 120 |
+
|
| 121 |
+
examples = ["A dignified beaver wearing glasses, a vest, and colorful neck tie.",
|
| 122 |
+
"The spirit of a tamagotchi wandering in the city of Barcelona",
|
| 123 |
+
"an ornate, high-backed mahogany chair with a red cushion",
|
| 124 |
+
"a sketch of a camel next to a stream",
|
| 125 |
+
"a delicate porcelain teacup sits on a saucer, its surface adorned with intricate blue patterns",
|
| 126 |
+
"a baby swan grafitti",
|
| 127 |
+
"A bald eagle made of chocolate powder, mango, and whipped cream"
|
| 128 |
+
]
|
| 129 |
|
| 130 |
+
with gr.Blocks() as demo:
|
| 131 |
+
gr.Markdown("## One step SDXL comparison 🦶")
|
| 132 |
+
gr.Markdown('Compare SDXL variants and distillations able to generate images in a single diffusion step')
|
| 133 |
+
prompt = gr.Textbox(label="Prompt")
|
| 134 |
+
run = gr.Button("Run")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
with gr.Accordion("Advanced options", open=False):
|
| 136 |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
| 137 |
negative_prompt = gr.Text(
|
|
|
|
| 191 |
value=6,
|
| 192 |
)
|
| 193 |
|
| 194 |
+
with gr.Row():
|
| 195 |
+
with gr.Column():
|
| 196 |
+
image_r3 = gr.Gallery(label="RealVisXL V3",columns=1, preview=True,)
|
| 197 |
+
gr.Markdown("## [RealVisXL V3](https://huggingface.co)")
|
| 198 |
+
with gr.Column():
|
| 199 |
+
image_r4 = gr.Gallery(label="RealVisXL V4",columns=1, preview=True,)
|
| 200 |
+
gr.Markdown("## [RealVisXL V4](https://huggingface.co)")
|
| 201 |
+
with gr.Column():
|
| 202 |
+
image_r5 = gr.Gallery(label="Playground v2.5",columns=1, preview=True,)
|
| 203 |
+
gr.Markdown("## [Playground v2.5](https://huggingface.co)")
|
| 204 |
+
image_outputs = [image_r3, image_r4, image_r5]
|
| 205 |
+
gr.on(
|
| 206 |
+
triggers=[prompt.submit, run.click],
|
| 207 |
+
fn=run_comparison,
|
| 208 |
+
inputs=[
|
| 209 |
+
prompt,
|
| 210 |
+
negative_prompt,
|
| 211 |
+
use_negative_prompt,
|
| 212 |
+
num_inference_steps,
|
| 213 |
+
num_images_per_prompt,
|
| 214 |
+
seed,
|
| 215 |
+
width,
|
| 216 |
+
height,
|
| 217 |
+
guidance_scale,
|
| 218 |
+
randomize_seed,
|
| 219 |
+
],
|
| 220 |
+
outputs=image_outputs
|
| 221 |
)
|
|
|
|
| 222 |
use_negative_prompt.change(
|
| 223 |
fn=lambda x: gr.update(visible=x),
|
| 224 |
inputs=use_negative_prompt,
|
| 225 |
outputs=negative_prompt,
|
| 226 |
api_name=False,
|
| 227 |
)
|
| 228 |
+
gr.Examples(
|
| 229 |
+
examples=examples,
|
| 230 |
+
fn=run_comparison,
|
| 231 |
+
inputs=prompt,
|
| 232 |
+
outputs=image_outputs,
|
| 233 |
+
cache_examples=False,
|
| 234 |
+
run_on_click=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
)
|
|
|
|
| 236 |
if __name__ == "__main__":
|
| 237 |
demo.queue(max_size=20).launch(show_api=False, debug=False)
|