Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import uuid
|
| 3 |
+
import joblib
|
| 4 |
+
import json
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import pandas as pd
|
| 8 |
+
|
| 9 |
+
from huggingface_hub import CommitScheduler
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
|
| 12 |
+
# Run the training script placed in the same directory as app.py
|
| 13 |
+
# The training script will train and persist a logistic regression
|
| 14 |
+
# model with the filename 'model.joblib'
|
| 15 |
+
|
| 16 |
+
os.system("python train.py")
|
| 17 |
+
|
| 18 |
+
# Load the freshly trained model from disk
|
| 19 |
+
|
| 20 |
+
machine_failure_predictor = joblib.load('model.joblib')
|
| 21 |
+
|
| 22 |
+
# Prepare the logging functionality
|
| 23 |
+
|
| 24 |
+
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
|
| 25 |
+
log_folder = log_file.parent
|
| 26 |
+
|
| 27 |
+
scheduler = CommitScheduler(
|
| 28 |
+
repo_id="machine-failure-mlops-demo-logs",
|
| 29 |
+
repo_type="dataset",
|
| 30 |
+
folder_path=log_folder,
|
| 31 |
+
path_in_repo="data",
|
| 32 |
+
every=2
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
# Define the predict function that runs when 'Submit' is clicked or when a API request is made
|
| 36 |
+
def predict_machine_failure(air_temperature, process_temperature, rotational_speed, torque, tool_wear, type):
|
| 37 |
+
sample = {
|
| 38 |
+
'Air temperature [K]': air_temperature,
|
| 39 |
+
'Process temperature [K]': process_temperature,
|
| 40 |
+
'Rotational speed [rpm]': rotational_speed,
|
| 41 |
+
'Torque [Nm]': torque,
|
| 42 |
+
'Tool wear [min]': tool_wear,
|
| 43 |
+
'Type': type
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
data_point = pd.DataFrame([sample])
|
| 47 |
+
prediction = machine_failure_predictor.predict(data_point).tolist()
|
| 48 |
+
|
| 49 |
+
# While the prediction is made, log both the inputs and outputs to a local log file
|
| 50 |
+
# While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
|
| 51 |
+
# access
|
| 52 |
+
|
| 53 |
+
with scheduler.lock:
|
| 54 |
+
with log_file.open("a") as f:
|
| 55 |
+
f.write(json.dumps(
|
| 56 |
+
{
|
| 57 |
+
'Air temperature [K]': air_temperature,
|
| 58 |
+
'Process temperature [K]': process_temperature,
|
| 59 |
+
'Rotational speed [rpm]': rotational_speed,
|
| 60 |
+
'Torque [Nm]': torque,
|
| 61 |
+
'Tool wear [min]': tool_wear,
|
| 62 |
+
'Type': type,
|
| 63 |
+
'prediction': prediction[0]
|
| 64 |
+
}
|
| 65 |
+
))
|
| 66 |
+
f.write("\n")
|
| 67 |
+
|
| 68 |
+
return prediction[0]
|
| 69 |
+
|
| 70 |
+
# Set up UI components for input and output
|
| 71 |
+
|
| 72 |
+
air_temperature_input = gr.Number(label='Air temperature [K]')
|
| 73 |
+
process_temperature_input = gr.Number(label='Process temperature [K]')
|
| 74 |
+
rotational_speed_input = gr.Number(label='Rotational speed [rpm]')
|
| 75 |
+
torque_input = gr.Number(label='Torque [Nm]')
|
| 76 |
+
tool_wear_input = gr.Number(label='Tool wear [min]')
|
| 77 |
+
type_input = gr.Dropdown(
|
| 78 |
+
['L', 'M', 'H'],
|
| 79 |
+
label='Type'
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
model_output = gr.Label(label="Machine failure")
|
| 83 |
+
|
| 84 |
+
# Create the interface
|
| 85 |
+
demo = gr.Interface(
|
| 86 |
+
fn=predict_machine_failure,
|
| 87 |
+
inputs=[air_temperature_input, process_temperature_input, rotational_speed_input,
|
| 88 |
+
torque_input, tool_wear_input, type_input],
|
| 89 |
+
outputs=model_output,
|
| 90 |
+
title="Machine Failure Predictor",
|
| 91 |
+
description="This API allows you to predict the machine failure status of an equipment",
|
| 92 |
+
examples=[[300.8, 310.3, 1538, 36.1, 198, 'L'],
|
| 93 |
+
[296.3, 307.3, 1368, 49.5, 10, 'M'],
|
| 94 |
+
[298.6, 309.1, 1339, 51.1, 34, 'M'],
|
| 95 |
+
[302.4, 311.1, 1634, 34.2, 184, 'L'],
|
| 96 |
+
[297.9, 307.7, 1546, 37.6, 72, 'L']],
|
| 97 |
+
concurrency_limit=16
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
# Launch with a load balancer
|
| 101 |
+
demo.queue()
|
| 102 |
+
demo.launch(share=False)
|