|
|
import spaces |
|
|
|
|
|
import random |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
|
|
|
from diffusers import StableDiffusionXLPipeline |
|
|
|
|
|
import gradio as gr |
|
|
|
|
|
from tkg import apply_tkg_noise, ColorSet, COLOR_SET_MAP |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
torch.backends.cudnn.allow_tf32 = True |
|
|
|
|
|
device = "cuda" |
|
|
model_repo_id = "cagliostrolab/animagine-xl-4.0" |
|
|
|
|
|
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
|
"cagliostrolab/animagine-xl-4.0", |
|
|
torch_dtype=torch.bfloat16, |
|
|
custom_pipeline="lpw_stable_diffusion_xl", |
|
|
add_watermarker=False, |
|
|
) |
|
|
pipe = pipe.to(device) |
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
MAX_IMAGE_SIZE = 2048 |
|
|
|
|
|
@spaces.GPU |
|
|
def infer( |
|
|
prompt: str, |
|
|
negative_prompt: str, |
|
|
seed: int, |
|
|
randomize_seed: bool, |
|
|
width: int, |
|
|
height: int, |
|
|
guidance_scale: float, |
|
|
num_inference_steps: int, |
|
|
tkg_channels: list[int] = [0, 1, 1, 0], |
|
|
chroma_key_shift: float = 0.11, |
|
|
progress=gr.Progress(track_tqdm=True), |
|
|
): |
|
|
if randomize_seed: |
|
|
seed = random.randint(0, MAX_SEED) |
|
|
|
|
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
|
|
latents = torch.randn( |
|
|
( |
|
|
1, |
|
|
4, |
|
|
height // 8, |
|
|
width // 8, |
|
|
), |
|
|
generator=generator, |
|
|
device=device, |
|
|
dtype=torch.bfloat16, |
|
|
) |
|
|
tkg_latents = apply_tkg_noise( |
|
|
latents, |
|
|
shift=chroma_key_shift, |
|
|
delta_shift=0.1, |
|
|
std_dev=0.5, |
|
|
factor=8, |
|
|
channels=tkg_channels, |
|
|
).to(torch.bfloat16) |
|
|
|
|
|
latents = torch.cat( |
|
|
[ |
|
|
tkg_latents, |
|
|
latents, |
|
|
], |
|
|
dim=0, |
|
|
) |
|
|
|
|
|
images = pipe( |
|
|
latents=latents, |
|
|
prompt=prompt, |
|
|
negative_prompt=negative_prompt, |
|
|
guidance_scale=guidance_scale, |
|
|
num_inference_steps=num_inference_steps, |
|
|
width=width, |
|
|
height=height, |
|
|
num_images_per_prompt=2, |
|
|
generator=generator, |
|
|
).images |
|
|
|
|
|
w_tkg, wo_tkg = images |
|
|
|
|
|
return w_tkg, wo_tkg, seed |
|
|
|
|
|
def color_name_to_channels(color_name: str) -> list[int]: |
|
|
if color_name in COLOR_SET_MAP: |
|
|
return COLOR_SET_MAP[color_name].channels |
|
|
else: |
|
|
raise ValueError(f"Unknown color name: {color_name}") |
|
|
|
|
|
def on_generate( |
|
|
prompt: str, |
|
|
negative_prompt: str, |
|
|
seed: int, |
|
|
randomize_seed: bool, |
|
|
width: int, |
|
|
height: int, |
|
|
guidance_scale: float, |
|
|
num_inference_steps: int, |
|
|
color_name: str, |
|
|
chroma_key_shift: float, |
|
|
*args, |
|
|
**kwargs |
|
|
): |
|
|
tkg_channels = color_name_to_channels(color_name) |
|
|
|
|
|
|
|
|
w_tkg, wo_tkg, seed = infer( |
|
|
prompt, |
|
|
negative_prompt, |
|
|
seed, |
|
|
randomize_seed, |
|
|
width, |
|
|
height, |
|
|
guidance_scale, |
|
|
num_inference_steps, |
|
|
tkg_channels=tkg_channels, |
|
|
chroma_key_shift=chroma_key_shift, |
|
|
*args, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
return w_tkg, wo_tkg, seed |
|
|
|
|
|
examples = [ |
|
|
|
|
|
"1girl, solo, school uniform, cat ears, full body, looking at viewer, straight-on, chibi, simple background, best quality", |
|
|
"1girl, solo, hand up, waving, long hair, sideways glance, upper body, cropped torso, simple background, best quality", |
|
|
] |
|
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
with gr.Column(): |
|
|
gr.Markdown( |
|
|
""" |
|
|
# TKG Chroma-Key with AnimagineXL 4.0 |
|
|
|
|
|
TKG-DMπ₯π: Training-free Chroma Key Content Generation Diffusion Model |
|
|
- arXiv: https://arxiv.org/abs/2411.15580 |
|
|
- GitHub: https://github.com/ryugo417/TKG-DM |
|
|
|
|
|
""") |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
prompt = gr.Textbox( |
|
|
label="Prompt", |
|
|
max_lines=4, |
|
|
placeholder="Enter your prompt", |
|
|
) |
|
|
|
|
|
color_set = gr.Dropdown( |
|
|
label="Background color", |
|
|
choices=list(COLOR_SET_MAP.keys()), |
|
|
value="green", |
|
|
) |
|
|
|
|
|
with gr.Accordion("TKG Settings", open=False): |
|
|
chroma_key_shift = gr.Slider( |
|
|
label="Latent mean shift for chroma key", |
|
|
minimum=0.0, |
|
|
maximum=0.2, |
|
|
step=0.005, |
|
|
value=0.11, |
|
|
) |
|
|
|
|
|
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
negative_prompt = gr.Textbox( |
|
|
label="Negative prompt", |
|
|
max_lines=4, |
|
|
placeholder="Enter a negative prompt", |
|
|
value="lowres, bad anatomy, bad hands, text, error, missing finger, extra digits, fewer digits, cropped, worst quality, low quality, low score, bad score, average score, signature, watermark, username, blurry", |
|
|
) |
|
|
|
|
|
seed = gr.Slider( |
|
|
label="Seed", |
|
|
minimum=0, |
|
|
maximum=MAX_SEED, |
|
|
step=1, |
|
|
value=0, |
|
|
) |
|
|
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
|
|
with gr.Row(): |
|
|
width = gr.Slider( |
|
|
label="Width", |
|
|
minimum=256, |
|
|
maximum=MAX_IMAGE_SIZE, |
|
|
step=32, |
|
|
value=832, |
|
|
) |
|
|
|
|
|
height = gr.Slider( |
|
|
label="Height", |
|
|
minimum=256, |
|
|
maximum=MAX_IMAGE_SIZE, |
|
|
step=32, |
|
|
value=1152, |
|
|
) |
|
|
|
|
|
with gr.Row(): |
|
|
guidance_scale = gr.Slider( |
|
|
label="Guidance scale", |
|
|
minimum=0.0, |
|
|
maximum=10.0, |
|
|
step=0.1, |
|
|
value=5.0, |
|
|
) |
|
|
|
|
|
num_inference_steps = gr.Slider( |
|
|
label="Number of inference steps", |
|
|
minimum=1, |
|
|
maximum=50, |
|
|
step=1, |
|
|
value=25, |
|
|
) |
|
|
|
|
|
with gr.Column(): |
|
|
run_button = gr.Button("Generate", variant="primary") |
|
|
with gr.Row(): |
|
|
result_w_tkg = gr.Image(label="with TKG") |
|
|
result_wo_tkg = gr.Image(label="without TKG") |
|
|
|
|
|
|
|
|
|
|
|
gr.Examples(examples=examples, inputs=[prompt]) |
|
|
|
|
|
gr.on( |
|
|
triggers=[run_button.click, prompt.submit], |
|
|
fn=on_generate, |
|
|
inputs=[ |
|
|
prompt, |
|
|
negative_prompt, |
|
|
seed, |
|
|
randomize_seed, |
|
|
width, |
|
|
height, |
|
|
guidance_scale, |
|
|
num_inference_steps, |
|
|
color_set, |
|
|
chroma_key_shift, |
|
|
], |
|
|
outputs=[result_w_tkg, result_wo_tkg, seed], |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |
|
|
|