Spaces:
Sleeping
Sleeping
File size: 9,283 Bytes
5e94db5 70e1e32 5e94db5 7faf6fd 5e94db5 7faf6fd 5e94db5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import gradio as gr
import pandas as pd
from PIL import Image
from model_registry import (
ALL_CATEGORIES, DEFAULT_THRESHOLD, REGISTRY, get_model, NUDENET_ONLY
)
from video_utils import (
has_ffmpeg, probe_duration, extract_frames_ffmpeg, runs_from_indices,
merge_seconds_union, redact_with_ffmpeg
)
import os
try:
from huggingface_hub import login
tok = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_HUB_TOKEN")
if tok: login(tok)
except Exception:
pass
APP_TITLE = "Content Moderation Demo (Image & Video)"
APP_DESC = """
Minimal prototype: image/video analysis, model & category selection, and threshold control.
"""
MODEL_NAMES = list(REGISTRY.keys())
IMG_EXAMPLES = [
# [model, image_path, categories, threshold]
["clip-multilabel", "examples/gambling_alcohol.jpg", ALL_CATEGORIES, 0.50],
["wdeva02-multilabel", "examples/smoke_alcohol.jpg", ALL_CATEGORIES, 0.50],
["animetimm-multilabel", "examples/gambling_smoke_alcohol.jpg", ALL_CATEGORIES, 0.50],
]
# ---------- Shared ----------
def on_model_change(model_name):
if model_name in NUDENET_ONLY:
cats_state = gr.CheckboxGroup(choices=["sexual"], value=["sexual"], interactive=False, label="Categories")
else:
cats_state = gr.CheckboxGroup(choices=ALL_CATEGORIES, value=ALL_CATEGORIES, interactive=True, label="Categories")
th = DEFAULT_THRESHOLD
return cats_state, gr.Slider(minimum=0.0, maximum=1.0, value=th, step=0.01, label="Threshold")
# ---------- Image ----------
def analyze_image(model_name, image, selected_categories, threshold):
if image is None:
return "No image.", None, gr.update(visible=False)
pil = Image.fromarray(image) if not isinstance(image, Image.Image) else image
model = get_model(model_name)
allowed = set(getattr(model, "categories", ALL_CATEGORIES))
req = [c for c in selected_categories if c in allowed]
if not req:
return "No categories selected.", None, gr.update(visible=False)
scores = model.predict_image(pil, req)
verdict = "RISKY" if any(v >= threshold for v in scores.values()) else "SAFE"
df = pd.DataFrame([{"category": k, "score": f"{(float(v)*100):.1f}%"} for k, v in sorted(scores.items())])
if getattr(model, "supports_selected_tags", False):
extra = model.extra_selected_tags(pil, top_k=15)
txt = "\n".join(f"- {t}: {s:.3f}" for t, s in extra)
return verdict, df, gr.update(visible=True, value=txt)
else:
return verdict, df, gr.update(visible=False)
# ---------- Video ----------
def analyze_video(model_name, video_file, selected_categories, threshold, sampling_fps, redact):
import tempfile, os, shutil
if video_file is None:
return pd.DataFrame([{"segment":"Error: No video."}]), gr.update(value=None)
dur = probe_duration(video_file)
if dur is not None and dur > 60.0:
return pd.DataFrame([{"segment":"Error: Video too long (limit: 60s)."}]), gr.update(value=None)
model = get_model(model_name)
allowed = set(getattr(model, "categories", ALL_CATEGORIES))
req = [c for c in selected_categories if c in allowed]
if not req:
return pd.DataFrame([{"segment":"Error: No categories selected."}]), gr.update(value=None)
with tempfile.TemporaryDirectory() as td:
try:
frames = extract_frames_ffmpeg(video_file, sampling_fps, os.path.join(td, "frames"))
except Exception:
return pd.DataFrame([{"segment":"Error: FFmpeg not available or failed to extract frames."}]), gr.update(value=None)
all_hit_idx: list[int] = []
frame_stats: dict[int, dict] = {}
for fp, idx in frames:
with Image.open(fp) as im:
pil = im.convert("RGB")
scores = model.predict_image(pil, req)
over = {c: float(scores.get(c, 0.0)) for c in req if float(scores.get(c, 0.0)) >= threshold}
if over:
all_hit_idx.append(idx)
peak_cat, peak_p = max(over.items(), key=lambda kv: kv[1])
frame_stats[idx] = {"hits": over, "peak_cat": peak_cat, "peak_p": peak_p}
if not all_hit_idx:
return pd.DataFrame([{"segment":"(no hits)"}]), gr.update(value=None)
union_runs = runs_from_indices(sorted(set(all_hit_idx)))
rows = []
for seg_id, (a, b) in enumerate(union_runs, start=1):
cat_counts = {c: 0 for c in req}
cat_maxp = {c: 0.0 for c in req}
for i in range(a, b + 1):
st = frame_stats.get(i)
if not st:
continue
for c, p in st["hits"].items():
cat_counts[c] += 1
if p > cat_maxp[c]:
cat_maxp[c] = p
present = [c for c in req if cat_counts[c] > 0]
present.sort(key=lambda c: (-cat_counts[c], -cat_maxp[c], c))
for c in present:
rows.append({
"seg": seg_id,
"start": round(a / sampling_fps, 3),
"end": round((b + 1) / sampling_fps, 3),
"category": c,
"max_p": round(cat_maxp[c], 3),
})
df = pd.DataFrame(rows).sort_values(["seg", "max_p"], ascending=[True, False]).reset_index(drop=True)
out_video = gr.update(value=None)
if redact and has_ffmpeg():
intervals = merge_seconds_union(all_hit_idx, sampling_fps, pad=0.25)
try:
out_path = os.path.join(td, "redacted.mp4")
redact_with_ffmpeg(video_file, intervals, out_path)
final_out = os.path.join(os.getcwd(), "redacted_output.mp4")
shutil.copyfile(out_path, final_out)
out_video = gr.update(value=final_out)
except Exception:
out_video = gr.update(value=None)
return df, out_video
# ---------- UI ----------
with gr.Blocks(title=APP_TITLE, css=".wrap-row { gap: 16px; }") as demo:
gr.Markdown(f"# {APP_TITLE}")
gr.Markdown(APP_DESC)
with gr.Tabs():
with gr.Tab("Image"):
with gr.Row(elem_classes=["wrap-row"]):
with gr.Column(scale=1, min_width=360):
model_dd = gr.Dropdown(label="Model", choices=MODEL_NAMES, value=MODEL_NAMES[0])
threshold = gr.Slider(0.0, 1.0, value=DEFAULT_THRESHOLD, step=0.01, label="Threshold")
categories = gr.CheckboxGroup(label="Categories", choices=ALL_CATEGORIES, value=ALL_CATEGORIES)
inp_img = gr.Image(type="pil", label="Upload Image")
btn = gr.Button("Analyze", variant="primary")
with gr.Column(scale=1, min_width=360):
verdict = gr.Label(label="Verdict")
scores_df = gr.Dataframe(headers=["category", "score"], datatype="str",
label="Scores", interactive=False)
extra_tags = gr.Textbox(label="Selected tags", visible=False, lines=12)
model_dd.change(on_model_change, inputs=model_dd, outputs=[categories, threshold])
btn.click(analyze_image, inputs=[model_dd, inp_img, categories, threshold],
outputs=[verdict, scores_df, extra_tags])
gr.Examples(
label="Try an example (Image)",
examples=IMG_EXAMPLES,
inputs=[model_dd, inp_img, categories, threshold],
outputs=[verdict, scores_df, extra_tags],
fn=analyze_image,
run_on_click=True,
cache_examples=False,
)
with gr.Tab("Video"):
with gr.Row(elem_classes=["wrap-row"]):
with gr.Column(scale=1, min_width=360):
v_model = gr.Dropdown(label="Model", choices=MODEL_NAMES, value=MODEL_NAMES[0])
v_threshold = gr.Slider(0.0, 1.0, value=DEFAULT_THRESHOLD,
step=0.01, label="Threshold")
v_fps = gr.Slider(0.25, 5.0, value=1.0, step=0.25, label="Sampling FPS")
v_redact = gr.Checkbox(label="Redact scenes (requires FFmpeg)", value=False)
v_categories = gr.CheckboxGroup(label="Categories", choices=ALL_CATEGORIES, value=ALL_CATEGORIES)
v_input = gr.Video(label="Upload short video (≤ 60s)")
v_btn = gr.Button("Analyze Video", variant="primary")
with gr.Column(scale=1, min_width=360):
v_segments = gr.Dataframe(label="Segments", interactive=False)
v_out = gr.Video(label="Redacted Video")
v_model.change(on_model_change, inputs=v_model, outputs=[v_categories, v_threshold])
v_btn.click(analyze_video, inputs=[v_model, v_input, v_categories, v_threshold, v_fps, v_redact],
outputs=[v_segments, v_out])
if __name__ == "__main__":
demo.launch()
|