Spaces:
Running
Running
| import os | |
| import subprocess | |
| import streamlit as st | |
| import librosa | |
| import librosa.display | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| import soundfile as sf | |
| import wave | |
| import json | |
| from vosk import Model, KaldiRecognizer | |
| from transformers import pipeline | |
| from huggingface_hub import snapshot_download | |
| from pydub import AudioSegment | |
| import noisereduce as nr | |
| # π¨ Apply Custom CSS Styling | |
| st.markdown( | |
| """ | |
| <style> | |
| .stApp { | |
| background-color: #f0f2f6; | |
| } | |
| .title { | |
| font-size: 32px; | |
| text-align: center; | |
| color: #4A90E2; | |
| font-weight: bold; | |
| } | |
| .subheader { | |
| font-size: 20px; | |
| font-weight: bold; | |
| color: #333; | |
| } | |
| .stButton>button { | |
| background-color: #4A90E2 !important; | |
| color: white !important; | |
| font-size: 18px !important; | |
| padding: 10px 24px !important; | |
| border-radius: 10px !important; | |
| border: none !important; | |
| } | |
| .stAudio { | |
| width: 100% !important; | |
| } | |
| .stMarkdown { | |
| font-size: 16px; | |
| color: #333; | |
| } | |
| </style> | |
| """, | |
| unsafe_allow_html=True | |
| ) | |
| # β Auto-Download Vosk Model (Speech-to-Text) | |
| VOSK_MODEL = "vosk-model-small-en-us-0.15" | |
| if not os.path.exists(VOSK_MODEL): | |
| st.write("π₯ Downloading Vosk Model...") | |
| subprocess.run(["wget", "-O", "vosk.zip", "https://alphacephei.com/vosk/models/vosk-model-small-en-us-0.15.zip"]) | |
| subprocess.run(["unzip", "vosk.zip"]) | |
| subprocess.run(["rm", "vosk.zip"]) | |
| # Load Vosk model | |
| model = Model(VOSK_MODEL) | |
| # β Auto-Download Wav2Vec2 Model (Emotion Detection) | |
| WAV2VEC_MODEL = "facebook/wav2vec2-large-xlsr-53" | |
| if not os.path.exists(WAV2VEC_MODEL): | |
| st.write(f"π₯ Downloading {WAV2VEC_MODEL}...") | |
| snapshot_download(repo_id=WAV2VEC_MODEL, local_dir=WAV2VEC_MODEL) | |
| # Load emotion detection model | |
| emotion_model = pipeline("audio-classification", model=WAV2VEC_MODEL) | |
| # β Streamlit UI | |
| st.markdown("<div class='title'>ποΈ Speech Detection System</div>", unsafe_allow_html=True) | |
| st.markdown("<div class='subheader'>π Upload an audio file for speech-to-text, noise filtering, and emotion analysis.</div>", unsafe_allow_html=True) | |
| uploaded_file = st.file_uploader("Upload an MP3/WAV file", type=["mp3", "wav"]) | |
| if uploaded_file: | |
| # Convert MP3 to WAV if needed | |
| file_path = f"temp/{uploaded_file.name}" | |
| os.makedirs("temp", exist_ok=True) | |
| with open(file_path, "wb") as f: | |
| f.write(uploaded_file.getbuffer()) | |
| if file_path.endswith(".mp3"): | |
| wav_path = file_path.replace(".mp3", ".wav") | |
| audio = AudioSegment.from_mp3(file_path) | |
| audio.export(wav_path, format="wav") | |
| file_path = wav_path | |
| # Load audio | |
| y, sr = librosa.load(file_path, sr=16000) | |
| # π΅ Display waveform | |
| st.markdown("<div class='subheader'>πΌ Audio Waveform:</div>", unsafe_allow_html=True) | |
| fig, ax = plt.subplots(figsize=(10, 4)) | |
| librosa.display.waveshow(y, sr=sr, ax=ax) | |
| st.pyplot(fig) | |
| # β Noise Reduction | |
| st.markdown("<div class='subheader'>π Applying Noise Reduction...</div>", unsafe_allow_html=True) | |
| y_denoised = nr.reduce_noise(y=y, sr=sr) | |
| denoised_path = file_path.replace(".wav", "_denoised.wav") | |
| sf.write(denoised_path, y_denoised, sr) | |
| # β Speech-to-Text using Vosk | |
| def transcribe_audio(audio_path): | |
| wf = wave.open(audio_path, "rb") | |
| rec = KaldiRecognizer(model, wf.getframerate()) | |
| while True: | |
| data = wf.readframes(4000) | |
| if len(data) == 0: | |
| break | |
| if rec.AcceptWaveform(data): | |
| result = json.loads(rec.Result()) | |
| return result["text"] | |
| transcription = transcribe_audio(file_path) | |
| st.markdown("<div class='subheader'>π Transcribed Text:</div>", unsafe_allow_html=True) | |
| st.markdown(f"<div class='stMarkdown'>{transcription}</div>", unsafe_allow_html=True) | |
| # β Emotion Detection | |
| st.markdown("<div class='subheader'>π Emotion Analysis:</div>", unsafe_allow_html=True) | |
| emotion_result = emotion_model(file_path) | |
| st.write(emotion_result) | |
| # β Play Original & Denoised Audio | |
| st.markdown("<div class='subheader'>π Play Audio:</div>", unsafe_allow_html=True) | |
| st.audio(file_path, format="audio/wav", start_time=0) | |
| st.markdown("<div class='subheader'>π Denoised Audio:</div>", unsafe_allow_html=True) | |
| st.audio(denoised_path, format="audio/wav", start_time=0) | |