Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -756,7 +756,7 @@ print(result)
|
|
| 756 |
@spaces.GPU
|
| 757 |
@torch.no_grad()
|
| 758 |
def generate_image(
|
| 759 |
-
prompt, width, height, guidance, seed,
|
| 760 |
do_img2img, init_image, image2image_strength, resize_img,
|
| 761 |
progress=gr.Progress(track_tqdm=True),
|
| 762 |
):
|
|
@@ -786,7 +786,7 @@ def generate_image(
|
|
| 786 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 787 |
x = torch.randn(1, 16, 2 * math.ceil(height / 16), 2 * math.ceil(width / 16), device=device, dtype=torch.bfloat16, generator=generator)
|
| 788 |
|
| 789 |
-
num_steps =
|
| 790 |
timesteps = get_schedule(num_steps, (x.shape[-1] * x.shape[-2]) // 4, shift=True)
|
| 791 |
|
| 792 |
if do_img2img and init_image is not None:
|
|
@@ -876,6 +876,13 @@ def create_demo():
|
|
| 876 |
width = gr.Slider(minimum=128, maximum=2048, step=64, label="Width", value=1360)
|
| 877 |
height = gr.Slider(minimum=128, maximum=2048, step=64, label="Height", value=768)
|
| 878 |
guidance = gr.Slider(minimum=1.0, maximum=5.0, step=0.1, label="Guidance", value=3.5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 879 |
seed = gr.Number(label="Seed", precision=-1)
|
| 880 |
do_img2img = gr.Checkbox(label="Image to Image", value=False)
|
| 881 |
init_image = gr.Image(label="Input Image", visible=False)
|
|
@@ -895,7 +902,7 @@ def create_demo():
|
|
| 895 |
|
| 896 |
generate_button.click(
|
| 897 |
fn=generate_image,
|
| 898 |
-
inputs=[prompt, width, height, guidance, seed, do_img2img, init_image, image2image_strength, resize_img],
|
| 899 |
outputs=[output_image, output_seed]
|
| 900 |
)
|
| 901 |
|
|
|
|
| 756 |
@spaces.GPU
|
| 757 |
@torch.no_grad()
|
| 758 |
def generate_image(
|
| 759 |
+
prompt, width, height, guidance, inference_steps, seed,
|
| 760 |
do_img2img, init_image, image2image_strength, resize_img,
|
| 761 |
progress=gr.Progress(track_tqdm=True),
|
| 762 |
):
|
|
|
|
| 786 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 787 |
x = torch.randn(1, 16, 2 * math.ceil(height / 16), 2 * math.ceil(width / 16), device=device, dtype=torch.bfloat16, generator=generator)
|
| 788 |
|
| 789 |
+
num_steps = inference_steps
|
| 790 |
timesteps = get_schedule(num_steps, (x.shape[-1] * x.shape[-2]) // 4, shift=True)
|
| 791 |
|
| 792 |
if do_img2img and init_image is not None:
|
|
|
|
| 876 |
width = gr.Slider(minimum=128, maximum=2048, step=64, label="Width", value=1360)
|
| 877 |
height = gr.Slider(minimum=128, maximum=2048, step=64, label="Height", value=768)
|
| 878 |
guidance = gr.Slider(minimum=1.0, maximum=5.0, step=0.1, label="Guidance", value=3.5)
|
| 879 |
+
inference_steps = gr.Slider(
|
| 880 |
+
label="Inference steps",
|
| 881 |
+
minimum=1,
|
| 882 |
+
maximum=30,
|
| 883 |
+
step=1,
|
| 884 |
+
value=16,
|
| 885 |
+
)
|
| 886 |
seed = gr.Number(label="Seed", precision=-1)
|
| 887 |
do_img2img = gr.Checkbox(label="Image to Image", value=False)
|
| 888 |
init_image = gr.Image(label="Input Image", visible=False)
|
|
|
|
| 902 |
|
| 903 |
generate_button.click(
|
| 904 |
fn=generate_image,
|
| 905 |
+
inputs=[prompt, width, height, guidance, inference_steps, seed, do_img2img, init_image, image2image_strength, resize_img],
|
| 906 |
outputs=[output_image, output_seed]
|
| 907 |
)
|
| 908 |
|