Spaces:
Build error
Build error
| import streamlit as st | |
| import pandas as pd | |
| from sklearn.ensemble import RandomForestClassifier | |
| import joblib | |
| def load_model(): | |
| # Load the pre-trained model | |
| model = joblib.load('weather_model.joblib') | |
| return model | |
| def predict_weather_conditions(model, input_data): | |
| # Make predictions on the input data | |
| predictions = model.predict(input_data) | |
| return predictions[0] | |
| def main(): | |
| # Load the pre-trained model | |
| model = load_model() | |
| # Add a title to your app | |
| st.title("Weather Prediction App") | |
| # Get user input | |
| temp_c = st.slider("Temperature in Celsius", min_value=-10.0, max_value=40.0, value=20.0) | |
| dew_point_temp_c = st.slider("Dew Point Temperature in Celsius", min_value=-10.0, max_value=30.0, value=15.0) | |
| rel_humidity = st.slider("Relative Humidity (%)", min_value=0, max_value=100, value=50) | |
| wind_speed_kmh = st.slider("Wind Speed in km/h", min_value=0, max_value=50, value=10) | |
| visibility_km = st.slider("Visibility in km", min_value=0.1, max_value=50.0, value=10.0) | |
| press_kpa = st.slider("Atmospheric Pressure in kPa", min_value=90.0, max_value=110.0, value=101.0) | |
| # Create a DataFrame with user input | |
| input_data = pd.DataFrame({ | |
| 'Temp_C': [temp_c], | |
| 'Dew Point Temp_C': [dew_point_temp_c], | |
| 'Rel Hum_%': [rel_humidity], | |
| 'Wind Speed_km/h': [wind_speed_kmh], | |
| 'Visibility_km': [visibility_km], | |
| 'Press_kPa': [press_kpa], | |
| }) | |
| # Make predictions | |
| if st.button("Predict Weather"): | |
| predicted_weather = predict_weather_conditions(model, input_data) | |
| st.success(f"Predicted Weather Condition: {predicted_weather}") | |
| if __name__ == '__main__': | |
| main() | |