# model.py import torch import torch.nn as nn import torch.nn.functional as F from torchvision.models import resnet50 from transformers import DistilBertModel class VisionEncoder(nn.Module): def __init__(self): super().__init__() pretrained_resnet50 = resnet50(weights='IMAGENET1K_V1') self.model = nn.Sequential(*list(pretrained_resnet50.children())[:-1]) for param in self.model.parameters(): param.requires_grad = False def forward(self, x): x = self.model(x) return x.view(x.size(0), -1) class TextEncoder(nn.Module): def __init__(self): super().__init__() self.model = DistilBertModel.from_pretrained('distilbert-base-uncased') for param in self.model.parameters(): param.requires_grad = False def forward(self, input_ids, attention_mask=None): outputs = self.model(input_ids=input_ids, attention_mask=attention_mask) return outputs.last_hidden_state[:, 0, :] class ProjectionHead(nn.Module): def __init__(self, embedding_dim, projection_dim=256, dropout=0.1): super().__init__() self.projection = nn.Linear(embedding_dim, projection_dim) self.gelu = nn.GELU() self.fc = nn.Linear(projection_dim, projection_dim) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(projection_dim) def forward(self, x): projected = self.projection(x) x = self.gelu(projected) x = self.fc(x) x = self.dropout(x) x = x + projected x = self.layer_norm(x) return x class CLIPModel(nn.Module): def __init__(self, image_embedding_dim, text_embedding_dim, projection_dim): super().__init__() self.vision_encoder = VisionEncoder() self.text_encoder = TextEncoder() self.image_projection = ProjectionHead(embedding_dim=image_embedding_dim, projection_dim=projection_dim) self.text_projection = ProjectionHead(embedding_dim=text_embedding_dim, projection_dim=projection_dim) def forward(self, batch): image_features = self.vision_encoder(batch["image"]) text_features = self.text_encoder( input_ids=batch["input_ids"], attention_mask=batch["attention_mask"] ) image_embeddings = self.image_projection(image_features) text_embeddings = self.text_projection(text_features) # Textbook's specific loss calculation logits = text_embeddings @ image_embeddings.T images_similarity = image_embeddings @ image_embeddings.T texts_similarity = text_embeddings @ text_embeddings.T targets = F.softmax((images_similarity + texts_similarity) / 2, dim=-1) texts_loss = F.cross_entropy(logits, targets) images_loss = F.cross_entropy(logits.T, targets.T) return (images_loss + texts_loss) / 2.0