# inference_model.py import torch import torch.nn as nn from torchvision.models import resnet50 from transformers import DistilBertModel # --- Copy these classes from your original file --- class VisionEncoder(nn.Module): def __init__(self): super().__init__() # Note: Using the newer 'weights' parameter is recommended pretrained_resnet50 = resnet50(weights='IMAGENET1K_V1') self.model = nn.Sequential(*list(pretrained_resnet50.children())[:-1]) for param in self.model.parameters(): param.requires_grad = False def forward(self, x): x = self.model(x) return x.view(x.size(0), -1) class TextEncoder(nn.Module): def __init__(self): super().__init__() self.model = DistilBertModel.from_pretrained('distilbert-base-uncased') for param in self.model.parameters(): param.requires_grad = False def forward(self, input_ids, attention_mask=None): outputs = self.model(input_ids=input_ids, attention_mask=attention_mask) return outputs.last_hidden_state[:, 0, :] class ProjectionHead(nn.Module): def __init__(self, embedding_dim, projection_dim=256, dropout=0.1): super().__init__() self.projection = nn.Linear(embedding_dim, projection_dim) self.gelu = nn.GELU() self.fc = nn.Linear(projection_dim, projection_dim) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(projection_dim) def forward(self, x): projected = self.projection(x) x = self.gelu(projected) x = self.fc(x) x = self.dropout(x) x = x + projected x = self.layer_norm(x) return x # --- This is the MODIFIED CLIPModel for inference --- class CLIPModel(nn.Module): def __init__(self, image_embedding_dim, text_embedding_dim, projection_dim): super().__init__() self.vision_encoder = VisionEncoder() self.text_encoder = TextEncoder() self.image_projection = ProjectionHead(embedding_dim=image_embedding_dim, projection_dim=projection_dim) self.text_projection = ProjectionHead(embedding_dim=text_embedding_dim, projection_dim=projection_dim) def forward(self, image_features=None, text_input_ids=None, text_attention_mask=None): image_embedding = None if image_features is not None: image_features = self.vision_encoder(image_features) image_embedding = self.image_projection(image_features) text_embedding = None if text_input_ids is not None: text_features = self.text_encoder( input_ids=text_input_ids, attention_mask=text_attention_mask ) text_embedding = self.text_projection(text_features) return image_embedding, text_embedding