Spaces:
Runtime error
Runtime error
Friedrich-M
commited on
Commit
·
b2d9087
1
Parent(s):
038a20f
update 11.22
Browse files- app.py +730 -0
- requirements.txt +20 -0
app.py
ADDED
|
@@ -0,0 +1,730 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
import cv2
|
| 5 |
+
import numpy as np
|
| 6 |
+
import mediapipe as mp
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, StableDiffusionControlNetInpaintPipeline
|
| 10 |
+
from transformers import AutoTokenizer
|
| 11 |
+
import base64
|
| 12 |
+
import requests
|
| 13 |
+
import json
|
| 14 |
+
from rembg import remove
|
| 15 |
+
from scipy import ndimage
|
| 16 |
+
from moviepy.editor import ImageSequenceClip
|
| 17 |
+
from tqdm import tqdm
|
| 18 |
+
import os
|
| 19 |
+
import shutil
|
| 20 |
+
import time
|
| 21 |
+
from huggingface_hub import snapshot_download
|
| 22 |
+
import subprocess
|
| 23 |
+
import sys
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
@spaces.GPU(duration=120)
|
| 27 |
+
def download_liveportrait():
|
| 28 |
+
"""
|
| 29 |
+
Clone the LivePortrait repository and prepare its dependencies.
|
| 30 |
+
"""
|
| 31 |
+
liveportrait_path = "./LivePortrait"
|
| 32 |
+
try:
|
| 33 |
+
if not os.path.exists(liveportrait_path):
|
| 34 |
+
print("Cloning LivePortrait repository...")
|
| 35 |
+
os.system(f"git clone https://github.com/KwaiVGI/LivePortrait.git {liveportrait_path}")
|
| 36 |
+
|
| 37 |
+
# 安装依赖
|
| 38 |
+
os.chdir(liveportrait_path)
|
| 39 |
+
print("Installing LivePortrait dependencies...")
|
| 40 |
+
os.system("pip install -r requirements.txt")
|
| 41 |
+
|
| 42 |
+
# 构建 MultiScaleDeformableAttention 模块
|
| 43 |
+
dependency_path = "src/utils/dependencies/XPose/models/UniPose/ops"
|
| 44 |
+
os.chdir(dependency_path)
|
| 45 |
+
print("Building MultiScaleDeformableAttention...")
|
| 46 |
+
os.system("python setup.py build")
|
| 47 |
+
os.system("python setup.py install")
|
| 48 |
+
|
| 49 |
+
# 确保模块路径可用
|
| 50 |
+
module_path = os.path.abspath(dependency_path)
|
| 51 |
+
if module_path not in sys.path:
|
| 52 |
+
sys.path.append(module_path)
|
| 53 |
+
|
| 54 |
+
# 返回 LivePortrait 目录
|
| 55 |
+
os.chdir("../../../../../../../")
|
| 56 |
+
print("LivePortrait setup completed")
|
| 57 |
+
except Exception as e:
|
| 58 |
+
print("Failed to initialize LivePortrait:", e)
|
| 59 |
+
raise
|
| 60 |
+
download_liveportrait()
|
| 61 |
+
|
| 62 |
+
@spaces.GPU(duration=120)
|
| 63 |
+
def download_huggingface_resources():
|
| 64 |
+
"""
|
| 65 |
+
Download additional necessary resources from Hugging Face using the CLI.
|
| 66 |
+
"""
|
| 67 |
+
try:
|
| 68 |
+
local_dir = "./pretrained_weights"
|
| 69 |
+
os.makedirs(local_dir, exist_ok=True)
|
| 70 |
+
|
| 71 |
+
# Use the Hugging Face CLI for downloading
|
| 72 |
+
cmd = [
|
| 73 |
+
"huggingface-cli", "download",
|
| 74 |
+
"KwaiVGI/LivePortrait",
|
| 75 |
+
"--local-dir", local_dir,
|
| 76 |
+
"--exclude", "*.git*", "README.md", "docs"
|
| 77 |
+
]
|
| 78 |
+
print("Executing command:", " ".join(cmd))
|
| 79 |
+
subprocess.run(cmd, check=True)
|
| 80 |
+
|
| 81 |
+
print("Resources successfully downloaded to:", local_dir)
|
| 82 |
+
except subprocess.CalledProcessError as e:
|
| 83 |
+
print("Error during Hugging Face CLI download:", e)
|
| 84 |
+
raise
|
| 85 |
+
except Exception as e:
|
| 86 |
+
print("General error in downloading resources:", e)
|
| 87 |
+
raise
|
| 88 |
+
|
| 89 |
+
download_huggingface_resources()
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
@spaces.GPU(duration=120)
|
| 93 |
+
def get_project_root():
|
| 94 |
+
"""Get the root directory of the current project."""
|
| 95 |
+
return os.path.abspath(os.path.dirname(__file__))
|
| 96 |
+
|
| 97 |
+
# Ensure working directory is project root
|
| 98 |
+
os.chdir(get_project_root())
|
| 99 |
+
|
| 100 |
+
# Initialize the necessary models and components
|
| 101 |
+
mp_pose = mp.solutions.pose
|
| 102 |
+
mp_drawing = mp.solutions.drawing_utils
|
| 103 |
+
|
| 104 |
+
# Load ControlNet model
|
| 105 |
+
controlnet = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-openpose', torch_dtype=torch.float16)
|
| 106 |
+
|
| 107 |
+
# Load Stable Diffusion model with ControlNet
|
| 108 |
+
pipe_controlnet = StableDiffusionControlNetPipeline.from_pretrained(
|
| 109 |
+
'runwayml/stable-diffusion-v1-5',
|
| 110 |
+
controlnet=controlnet,
|
| 111 |
+
torch_dtype=torch.float16
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
# Load Inpaint Controlnet
|
| 115 |
+
pipe_inpaint_controlnet = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
| 116 |
+
"runwayml/stable-diffusion-inpainting",
|
| 117 |
+
controlnet=controlnet,
|
| 118 |
+
torch_dtype=torch.float16
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
# Move to GPU if available
|
| 122 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 123 |
+
pipe_controlnet.to(device)
|
| 124 |
+
pipe_controlnet.enable_attention_slicing()
|
| 125 |
+
pipe_inpaint_controlnet.to(device)
|
| 126 |
+
pipe_inpaint_controlnet.enable_attention_slicing()
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
@spaces.GPU(duration=120)
|
| 130 |
+
def resize_to_multiple_of_64(width, height):
|
| 131 |
+
return (width // 64) * 64, (height // 64) * 64
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
@spaces.GPU(duration=120)
|
| 135 |
+
def expand_mask(mask, kernel_size):
|
| 136 |
+
mask_array = np.array(mask)
|
| 137 |
+
structuring_element = np.ones((kernel_size, kernel_size), dtype=np.uint8)
|
| 138 |
+
expanded_mask_array = ndimage.binary_dilation(
|
| 139 |
+
mask_array, structure=structuring_element
|
| 140 |
+
).astype(np.uint8) * 255
|
| 141 |
+
return Image.fromarray(expanded_mask_array)
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
@spaces.GPU(duration=120)
|
| 145 |
+
def crop_face_to_square(image_rgb, padding_ratio=0.2):
|
| 146 |
+
"""
|
| 147 |
+
Detects the face in the input image and crops an enlarged square region around it.
|
| 148 |
+
"""
|
| 149 |
+
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
| 150 |
+
gray_image = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2GRAY)
|
| 151 |
+
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
|
| 152 |
+
|
| 153 |
+
if len(faces) == 0:
|
| 154 |
+
print("No face detected.")
|
| 155 |
+
return None
|
| 156 |
+
|
| 157 |
+
x, y, w, h = faces[0]
|
| 158 |
+
center_x, center_y = x + w // 2, y + h // 2
|
| 159 |
+
side_length = max(w, h)
|
| 160 |
+
padded_side_length = int(side_length * (1 + padding_ratio))
|
| 161 |
+
half_side = padded_side_length // 2
|
| 162 |
+
|
| 163 |
+
top_left_x = max(center_x - half_side, 0)
|
| 164 |
+
top_left_y = max(center_y - half_side, 0)
|
| 165 |
+
bottom_right_x = min(center_x + half_side, image_rgb.shape[1])
|
| 166 |
+
bottom_right_y = min(center_y + half_side, image_rgb.shape[0])
|
| 167 |
+
|
| 168 |
+
cropped_image = image_rgb[top_left_y:bottom_right_y, top_left_x:bottom_right_x]
|
| 169 |
+
resized_image = cv2.resize(cropped_image, (768, 768), interpolation=cv2.INTER_AREA)
|
| 170 |
+
|
| 171 |
+
return resized_image
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
@spaces.GPU(duration=120)
|
| 175 |
+
def spirit_animal_baseline(image_path, num_images = 4):
|
| 176 |
+
|
| 177 |
+
image = cv2.imread(image_path)
|
| 178 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 179 |
+
|
| 180 |
+
image_rgb = crop_face_to_square(image_rgb)
|
| 181 |
+
|
| 182 |
+
original_height, original_width, _ = image_rgb.shape
|
| 183 |
+
aspect_ratio = original_width / original_height
|
| 184 |
+
|
| 185 |
+
if aspect_ratio > 1:
|
| 186 |
+
gen_width = 768
|
| 187 |
+
gen_height = int(gen_width / aspect_ratio)
|
| 188 |
+
else:
|
| 189 |
+
gen_height = 768
|
| 190 |
+
gen_width = int(gen_height * aspect_ratio)
|
| 191 |
+
|
| 192 |
+
gen_width, gen_height = resize_to_multiple_of_64(gen_width, gen_height)
|
| 193 |
+
|
| 194 |
+
with mp_pose.Pose(static_image_mode=True) as pose:
|
| 195 |
+
results = pose.process(image_rgb)
|
| 196 |
+
|
| 197 |
+
if results.pose_landmarks:
|
| 198 |
+
annotated_image = image_rgb.copy()
|
| 199 |
+
mp_drawing.draw_landmarks(
|
| 200 |
+
annotated_image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS
|
| 201 |
+
)
|
| 202 |
+
else:
|
| 203 |
+
print("No pose detected.")
|
| 204 |
+
return "No pose detected.", []
|
| 205 |
+
|
| 206 |
+
pose_image = np.zeros_like(image_rgb)
|
| 207 |
+
for connection in mp_pose.POSE_CONNECTIONS:
|
| 208 |
+
start_idx, end_idx = connection
|
| 209 |
+
start, end = results.pose_landmarks.landmark[start_idx], results.pose_landmarks.landmark[end_idx]
|
| 210 |
+
if start.visibility > 0.5 and end.visibility > 0.5:
|
| 211 |
+
x1, y1 = int(start.x * pose_image.shape[1]), int(start.y * pose_image.shape[0])
|
| 212 |
+
x2, y2 = int(end.x * pose_image.shape[1]), int(end.y * pose_image.shape[0])
|
| 213 |
+
cv2.line(pose_image, (x1, y1), (x2, y2), (255, 255, 255), 2)
|
| 214 |
+
|
| 215 |
+
pose_pil = Image.fromarray(cv2.resize(pose_image, (gen_width, gen_height), interpolation=cv2.INTER_LANCZOS4))
|
| 216 |
+
|
| 217 |
+
base64_image = base64.b64encode(cv2.imencode('.jpg', image_rgb)[1]).decode()
|
| 218 |
+
api_key = "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"
|
| 219 |
+
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
|
| 220 |
+
payload = {
|
| 221 |
+
"model": "gpt-4o-mini",
|
| 222 |
+
"messages": [
|
| 223 |
+
{
|
| 224 |
+
"role": "user",
|
| 225 |
+
"content": [
|
| 226 |
+
{"type": "text", "text": "Based on the provided image, think of one spirit animal that is right for the person, and answer in the following format: An ultra-realistic, highly detailed photograph of a single {animal} with facial features characterized by {description}, standing upright in a human-like pose, looking directly at the camera, against a solid, neutral background. Generate one sentence without any other responses or numbering."},
|
| 227 |
+
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
|
| 228 |
+
]
|
| 229 |
+
}
|
| 230 |
+
],
|
| 231 |
+
"max_tokens": 100
|
| 232 |
+
}
|
| 233 |
+
|
| 234 |
+
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
|
| 235 |
+
prompt = response.json()['choices'][0]['message']['content'] if 'choices' in response.json() else "A majestic animal"
|
| 236 |
+
|
| 237 |
+
num_images = num_images
|
| 238 |
+
generated_images = []
|
| 239 |
+
with torch.no_grad():
|
| 240 |
+
with torch.autocast(device_type=device.type):
|
| 241 |
+
for _ in range(num_images):
|
| 242 |
+
images = pipe_controlnet(
|
| 243 |
+
prompt=prompt,
|
| 244 |
+
negative_prompt="multiple heads, extra limbs, duplicate faces, mutated anatomy, disfigured, blurry",
|
| 245 |
+
num_inference_steps=20,
|
| 246 |
+
image=pose_pil,
|
| 247 |
+
guidance_scale=5,
|
| 248 |
+
width=gen_width,
|
| 249 |
+
height=gen_height,
|
| 250 |
+
).images
|
| 251 |
+
generated_images.append(images[0])
|
| 252 |
+
|
| 253 |
+
return prompt, generated_images
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
@spaces.GPU(duration=120)
|
| 257 |
+
def spirit_animal_with_background(image_path, num_images = 4):
|
| 258 |
+
|
| 259 |
+
image = cv2.imread(image_path)
|
| 260 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 261 |
+
|
| 262 |
+
# image_rgb = crop_face_to_square(image_rgb)
|
| 263 |
+
|
| 264 |
+
original_height, original_width, _ = image_rgb.shape
|
| 265 |
+
aspect_ratio = original_width / original_height
|
| 266 |
+
|
| 267 |
+
if aspect_ratio > 1:
|
| 268 |
+
gen_width = 768
|
| 269 |
+
gen_height = int(gen_width / aspect_ratio)
|
| 270 |
+
else:
|
| 271 |
+
gen_height = 768
|
| 272 |
+
gen_width = int(gen_height * aspect_ratio)
|
| 273 |
+
|
| 274 |
+
gen_width, gen_height = resize_to_multiple_of_64(gen_width, gen_height)
|
| 275 |
+
|
| 276 |
+
with mp_pose.Pose(static_image_mode=True) as pose:
|
| 277 |
+
results = pose.process(image_rgb)
|
| 278 |
+
|
| 279 |
+
if results.pose_landmarks:
|
| 280 |
+
annotated_image = image_rgb.copy()
|
| 281 |
+
mp_drawing.draw_landmarks(
|
| 282 |
+
annotated_image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS
|
| 283 |
+
)
|
| 284 |
+
else:
|
| 285 |
+
print("No pose detected.")
|
| 286 |
+
return "No pose detected.", []
|
| 287 |
+
|
| 288 |
+
pose_image = np.zeros_like(image_rgb)
|
| 289 |
+
for connection in mp_pose.POSE_CONNECTIONS:
|
| 290 |
+
start_idx, end_idx = connection
|
| 291 |
+
start, end = results.pose_landmarks.landmark[start_idx], results.pose_landmarks.landmark[end_idx]
|
| 292 |
+
if start.visibility > 0.5 and end.visibility > 0.5:
|
| 293 |
+
x1, y1 = int(start.x * pose_image.shape[1]), int(start.y * pose_image.shape[0])
|
| 294 |
+
x2, y2 = int(end.x * pose_image.shape[1]), int(end.y * pose_image.shape[0])
|
| 295 |
+
cv2.line(pose_image, (x1, y1), (x2, y2), (255, 255, 255), 2)
|
| 296 |
+
|
| 297 |
+
pose_pil = Image.fromarray(cv2.resize(pose_image, (gen_width, gen_height), interpolation=cv2.INTER_LANCZOS4))
|
| 298 |
+
|
| 299 |
+
base64_image = base64.b64encode(cv2.imencode('.jpg', image_rgb)[1]).decode()
|
| 300 |
+
api_key = "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"
|
| 301 |
+
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
|
| 302 |
+
payload = {
|
| 303 |
+
"model": "gpt-4o-mini",
|
| 304 |
+
"messages": [
|
| 305 |
+
{
|
| 306 |
+
"role": "user",
|
| 307 |
+
"content": [
|
| 308 |
+
{"type": "text", "text": "Based on the provided image, think of one spirit animal that is right for the person, and answer in the following format: An ultra-realistic, highly detailed photograph of a single {animal} with facial features characterized by {description}, standing upright in a human-like pose, looking directly at the camera, against a solid, neutral background. Generate one sentence without any other responses or numbering."},
|
| 309 |
+
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
|
| 310 |
+
]
|
| 311 |
+
}
|
| 312 |
+
],
|
| 313 |
+
"max_tokens": 100
|
| 314 |
+
}
|
| 315 |
+
|
| 316 |
+
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
|
| 317 |
+
prompt = response.json()['choices'][0]['message']['content'] if 'choices' in response.json() else "A majestic animal"
|
| 318 |
+
|
| 319 |
+
mask_image = remove(Image.fromarray(image_rgb))
|
| 320 |
+
initial_mask = mask_image.split()[-1].convert('L')
|
| 321 |
+
|
| 322 |
+
kernel_size = min(gen_width, gen_height) // 15
|
| 323 |
+
expanded_mask = expand_mask(initial_mask, kernel_size)
|
| 324 |
+
|
| 325 |
+
num_images = num_images
|
| 326 |
+
generated_images = []
|
| 327 |
+
with torch.no_grad():
|
| 328 |
+
with torch.autocast(device_type=device.type):
|
| 329 |
+
for _ in range(num_images):
|
| 330 |
+
images = pipe_inpaint_controlnet(
|
| 331 |
+
prompt=prompt,
|
| 332 |
+
negative_prompt="multiple heads, extra limbs, duplicate faces, mutated anatomy, disfigured, blurry",
|
| 333 |
+
num_inference_steps=20,
|
| 334 |
+
image=Image.fromarray(image_rgb),
|
| 335 |
+
mask_image=expanded_mask,
|
| 336 |
+
control_image=pose_pil,
|
| 337 |
+
width=gen_width,
|
| 338 |
+
height=gen_height,
|
| 339 |
+
guidance_scale=5,
|
| 340 |
+
).images
|
| 341 |
+
generated_images.append(images[0])
|
| 342 |
+
|
| 343 |
+
return prompt, generated_images
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
@spaces.GPU(duration=120)
|
| 347 |
+
def generate_multiple_animals(image_path, keep_background=True, num_images = 4):
|
| 348 |
+
|
| 349 |
+
image = cv2.imread(image_path)
|
| 350 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 351 |
+
|
| 352 |
+
image_rgb = crop_face_to_square(image_rgb)
|
| 353 |
+
|
| 354 |
+
original_image = Image.fromarray(image_rgb)
|
| 355 |
+
original_width, original_height = original_image.size
|
| 356 |
+
|
| 357 |
+
aspect_ratio = original_width / original_height
|
| 358 |
+
if aspect_ratio > 1:
|
| 359 |
+
gen_width = 768
|
| 360 |
+
gen_height = int(gen_width / aspect_ratio)
|
| 361 |
+
else:
|
| 362 |
+
gen_height = 768
|
| 363 |
+
gen_width = int(gen_height * aspect_ratio)
|
| 364 |
+
|
| 365 |
+
gen_width, gen_height = resize_to_multiple_of_64(gen_width, gen_height)
|
| 366 |
+
|
| 367 |
+
base64_image = base64.b64encode(cv2.imencode('.jpg', image_rgb)[1]).decode()
|
| 368 |
+
api_key = "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"
|
| 369 |
+
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
|
| 370 |
+
payload = {
|
| 371 |
+
"model": "gpt-4o-mini",
|
| 372 |
+
"messages": [
|
| 373 |
+
{
|
| 374 |
+
"role": "user",
|
| 375 |
+
"content": [
|
| 376 |
+
{
|
| 377 |
+
"type": "text",
|
| 378 |
+
"text": "Based on the provided image, think of " + str(num_images) + " different spirit animals that are right for the person, and answer in the following format for each: An ultra-realistic, highly detailed photograph of a {animal} with facial features characterized by {description}, standing upright in a human-like pose, looking directly at the camera, against a solid, neutral background. Generate these sentences without any other responses or numbering. For the animal choose between owl, bear, fox, koala, lion, dog"
|
| 379 |
+
},
|
| 380 |
+
{
|
| 381 |
+
"type": "image_url",
|
| 382 |
+
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}
|
| 383 |
+
}
|
| 384 |
+
]
|
| 385 |
+
}
|
| 386 |
+
],
|
| 387 |
+
"max_tokens": 500
|
| 388 |
+
}
|
| 389 |
+
|
| 390 |
+
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
|
| 391 |
+
response_json = response.json()
|
| 392 |
+
|
| 393 |
+
if 'choices' in response_json and len(response_json['choices']) > 0:
|
| 394 |
+
content = response_json['choices'][0]['message']['content']
|
| 395 |
+
prompts = [prompt.strip() for prompt in content.strip().split('.') if prompt.strip()]
|
| 396 |
+
negative_prompt = (
|
| 397 |
+
"multiple heads, extra limbs, duplicate faces, mutated anatomy, disfigured, "
|
| 398 |
+
"blurry, deformed, text, watermark, logo, low resolution"
|
| 399 |
+
)
|
| 400 |
+
formatted_prompts = "\n".join(f"{i+1}. {prompt}" for i, prompt in enumerate(prompts))
|
| 401 |
+
|
| 402 |
+
with mp_pose.Pose(static_image_mode=True) as pose:
|
| 403 |
+
results = pose.process(image_rgb)
|
| 404 |
+
|
| 405 |
+
if results.pose_landmarks:
|
| 406 |
+
annotated_image = image_rgb.copy()
|
| 407 |
+
mp_drawing.draw_landmarks(
|
| 408 |
+
annotated_image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS
|
| 409 |
+
)
|
| 410 |
+
else:
|
| 411 |
+
print("No pose detected.")
|
| 412 |
+
return "No pose detected.", []
|
| 413 |
+
|
| 414 |
+
pose_image = np.zeros_like(image_rgb)
|
| 415 |
+
for connection in mp_pose.POSE_CONNECTIONS:
|
| 416 |
+
start_idx, end_idx = connection
|
| 417 |
+
start, end = results.pose_landmarks.landmark[start_idx], results.pose_landmarks.landmark[end_idx]
|
| 418 |
+
if start.visibility > 0.5 and end.visibility > 0.5:
|
| 419 |
+
x1, y1 = int(start.x * pose_image.shape[1]), int(start.y * pose_image.shape[0])
|
| 420 |
+
x2, y2 = int(end.x * pose_image.shape[1]), int(end.y * pose_image.shape[0])
|
| 421 |
+
cv2.line(pose_image, (x1, y1), (x2, y2), (255, 255, 255), 2)
|
| 422 |
+
|
| 423 |
+
pose_pil = Image.fromarray(cv2.resize(pose_image, (gen_width, gen_height), interpolation=cv2.INTER_LANCZOS4))
|
| 424 |
+
|
| 425 |
+
if keep_background:
|
| 426 |
+
mask_image = remove(original_image)
|
| 427 |
+
initial_mask = mask_image.split()[-1].convert('L')
|
| 428 |
+
expanded_mask = expand_mask(initial_mask, kernel_size=min(gen_width, gen_height) // 15)
|
| 429 |
+
else:
|
| 430 |
+
expanded_mask = None
|
| 431 |
+
|
| 432 |
+
generated_images = []
|
| 433 |
+
|
| 434 |
+
if keep_background:
|
| 435 |
+
with torch.no_grad():
|
| 436 |
+
with torch.amp.autocast("cuda"):
|
| 437 |
+
for prompt in prompts:
|
| 438 |
+
images = pipe_inpaint_controlnet(
|
| 439 |
+
prompt=prompt,
|
| 440 |
+
negative_prompt=negative_prompt,
|
| 441 |
+
num_inference_steps=20,
|
| 442 |
+
image=Image.fromarray(image_rgb),
|
| 443 |
+
mask_image=expanded_mask,
|
| 444 |
+
control_image=pose_pil,
|
| 445 |
+
width=gen_width,
|
| 446 |
+
height=gen_height,
|
| 447 |
+
guidance_scale=5,
|
| 448 |
+
).images
|
| 449 |
+
generated_images.append(images[0])
|
| 450 |
+
else:
|
| 451 |
+
with torch.no_grad():
|
| 452 |
+
with torch.amp.autocast("cuda"):
|
| 453 |
+
for prompt in prompts:
|
| 454 |
+
images = pipe_controlnet(
|
| 455 |
+
prompt=prompt,
|
| 456 |
+
negative_prompt=negative_prompt,
|
| 457 |
+
num_inference_steps=20,
|
| 458 |
+
image=pose_pil,
|
| 459 |
+
guidance_scale=5,
|
| 460 |
+
width=gen_width,
|
| 461 |
+
height=gen_height,
|
| 462 |
+
).images
|
| 463 |
+
generated_images.append(images[0])
|
| 464 |
+
|
| 465 |
+
return formatted_prompts, generated_images
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
@spaces.GPU(duration=120)
|
| 469 |
+
def wait_for_file(file_path, timeout=500):
|
| 470 |
+
"""
|
| 471 |
+
Wait for a file to be created, with a specified timeout.
|
| 472 |
+
Args:
|
| 473 |
+
file_path (str): The path of the file to wait for.
|
| 474 |
+
timeout (int): Maximum time to wait in seconds.
|
| 475 |
+
Returns:
|
| 476 |
+
bool: True if the file is created, False if timeout occurs.
|
| 477 |
+
"""
|
| 478 |
+
start_time = time.time()
|
| 479 |
+
while not os.path.exists(file_path):
|
| 480 |
+
if time.time() - start_time > timeout:
|
| 481 |
+
return False
|
| 482 |
+
time.sleep(0.5) # Check every 0.5 seconds
|
| 483 |
+
return True
|
| 484 |
+
|
| 485 |
+
|
| 486 |
+
@spaces.GPU(duration=120)
|
| 487 |
+
def generate_spirit_animal_video(driving_video_path):
|
| 488 |
+
os.chdir(".")
|
| 489 |
+
try:
|
| 490 |
+
# Step 1: Extract the first frame
|
| 491 |
+
cap = cv2.VideoCapture(driving_video_path)
|
| 492 |
+
if not cap.isOpened():
|
| 493 |
+
print("Error: Unable to open video.")
|
| 494 |
+
return None
|
| 495 |
+
|
| 496 |
+
ret, frame = cap.read()
|
| 497 |
+
cap.release()
|
| 498 |
+
if not ret:
|
| 499 |
+
print("Error: Unable to read the first frame.")
|
| 500 |
+
return None
|
| 501 |
+
|
| 502 |
+
# Save the first frame
|
| 503 |
+
first_frame_path = "./first_frame.jpg"
|
| 504 |
+
cv2.imwrite(first_frame_path, frame)
|
| 505 |
+
print(f"First frame saved to: {first_frame_path}")
|
| 506 |
+
|
| 507 |
+
# Generate spirit animal image
|
| 508 |
+
_, input_image = generate_multiple_animals(first_frame_path, True, 1)
|
| 509 |
+
if input_image is None or not input_image:
|
| 510 |
+
print("Error: Spirit animal generation failed.")
|
| 511 |
+
return None
|
| 512 |
+
|
| 513 |
+
spirit_animal_path = "./animal.jpeg"
|
| 514 |
+
cv2.imwrite(spirit_animal_path, cv2.cvtColor(np.array(input_image[0]), cv2.COLOR_RGB2BGR))
|
| 515 |
+
print(f"Spirit animal image saved to: {spirit_animal_path}")
|
| 516 |
+
|
| 517 |
+
# Step 3: Run inference
|
| 518 |
+
output_path = "./animations/animal--uploaded_video_compressed.mp4"
|
| 519 |
+
script_path = os.path.abspath("./LivePortrait/inference_animals.py")
|
| 520 |
+
|
| 521 |
+
if not os.path.exists(script_path):
|
| 522 |
+
print(f"Error: Inference script not found at {script_path}.")
|
| 523 |
+
return None
|
| 524 |
+
|
| 525 |
+
command = f"python {script_path} -s {spirit_animal_path} -d {driving_video_path} --driving_multiplier 1.75 --no_flag_stitching"
|
| 526 |
+
print(f"Running command: {command}")
|
| 527 |
+
result = os.system(command)
|
| 528 |
+
|
| 529 |
+
if result != 0:
|
| 530 |
+
print(f"Error: Command failed with exit code {result}.")
|
| 531 |
+
return None
|
| 532 |
+
|
| 533 |
+
# Verify output file exists
|
| 534 |
+
if not os.path.exists(output_path):
|
| 535 |
+
print(f"Error: Expected output video not found at {output_path}.")
|
| 536 |
+
return None
|
| 537 |
+
|
| 538 |
+
print(f"Output video generated at: {output_path}")
|
| 539 |
+
return output_path
|
| 540 |
+
except Exception as e:
|
| 541 |
+
print(f"Error occurred: {e}")
|
| 542 |
+
return None
|
| 543 |
+
|
| 544 |
+
|
| 545 |
+
@spaces.GPU(duration=120)
|
| 546 |
+
def generate_spirit_animal(image, animal_type, background):
|
| 547 |
+
if animal_type == "Single Animal":
|
| 548 |
+
if background == "Preserve Background":
|
| 549 |
+
prompt, generated_images = spirit_animal_with_background(image)
|
| 550 |
+
else:
|
| 551 |
+
prompt, generated_images = spirit_animal_baseline(image)
|
| 552 |
+
elif animal_type == "Multiple Animals":
|
| 553 |
+
if background == "Preserve Background":
|
| 554 |
+
prompt, generated_images = generate_multiple_animals(image, keep_background=True)
|
| 555 |
+
else:
|
| 556 |
+
prompt, generated_images = generate_multiple_animals(image, keep_background=False)
|
| 557 |
+
return prompt, generated_images
|
| 558 |
+
|
| 559 |
+
|
| 560 |
+
@spaces.GPU(duration=120)
|
| 561 |
+
def compress_video(input_path, output_path, target_size_mb):
|
| 562 |
+
target_size_bytes = target_size_mb * 1024 * 1024
|
| 563 |
+
temp_output = "./temp_compressed.mp4"
|
| 564 |
+
|
| 565 |
+
cap = cv2.VideoCapture(input_path)
|
| 566 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # 使用 mp4 编码
|
| 567 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 568 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 569 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 570 |
+
|
| 571 |
+
writer = cv2.VideoWriter(temp_output, fourcc, fps, (width, height))
|
| 572 |
+
while cap.isOpened():
|
| 573 |
+
ret, frame = cap.read()
|
| 574 |
+
if not ret:
|
| 575 |
+
break
|
| 576 |
+
writer.write(frame)
|
| 577 |
+
|
| 578 |
+
cap.release()
|
| 579 |
+
writer.release()
|
| 580 |
+
|
| 581 |
+
current_size = os.path.getsize(temp_output)
|
| 582 |
+
if current_size > target_size_bytes:
|
| 583 |
+
bitrate = int(target_size_bytes * 8 / (current_size / target_size_bytes)) # 按比例缩减比特率
|
| 584 |
+
os.system(f"ffmpeg -i {temp_output} -b:v {bitrate} -y {output_path}")
|
| 585 |
+
os.remove(temp_output)
|
| 586 |
+
else:
|
| 587 |
+
shutil.move(temp_output, output_path)
|
| 588 |
+
|
| 589 |
+
|
| 590 |
+
@spaces.GPU(duration=120)
|
| 591 |
+
def process_video(video_file):
|
| 592 |
+
|
| 593 |
+
# # 初始化 LivePortrait
|
| 594 |
+
# try:
|
| 595 |
+
# download_liveportrait()
|
| 596 |
+
# except Exception as e:
|
| 597 |
+
# print("Failed to initialize LivePortrait:", e)
|
| 598 |
+
# return gr.update(value=None, visible=False)
|
| 599 |
+
|
| 600 |
+
# # 下载 Hugging Face 资源
|
| 601 |
+
# try:
|
| 602 |
+
# download_huggingface_resources()
|
| 603 |
+
# except Exception as e:
|
| 604 |
+
# print("Failed to download Hugging Face resources:", e)
|
| 605 |
+
# return gr.update(value=None, visible=False)
|
| 606 |
+
|
| 607 |
+
compressed_path = "./uploaded_video_compressed.mp4"
|
| 608 |
+
compress_video(video_file, compressed_path, target_size_mb=1)
|
| 609 |
+
print(f"Compressed and moved video to: {compressed_path}")
|
| 610 |
+
|
| 611 |
+
output_video_path = "./animations/animal--uploaded_video_compressed.mp4"
|
| 612 |
+
|
| 613 |
+
generate_spirit_animal_video(compressed_path)
|
| 614 |
+
|
| 615 |
+
# Wait until the output video is generated
|
| 616 |
+
timeout = 60000 # Timeout in seconds
|
| 617 |
+
if not wait_for_file(output_video_path, timeout=timeout):
|
| 618 |
+
print("Timeout occurred while waiting for video generation.")
|
| 619 |
+
return gr.update(value=None, visible=False) # Hide output if failed
|
| 620 |
+
|
| 621 |
+
# Return the generated video path
|
| 622 |
+
print(f"Output video is ready: {output_video_path}")
|
| 623 |
+
return gr.update(value=output_video_path, visible=True) # Show video
|
| 624 |
+
|
| 625 |
+
|
| 626 |
+
# Custom CSS styling for the interface
|
| 627 |
+
css = """
|
| 628 |
+
#title-container {
|
| 629 |
+
font-family: 'Arial', sans-serif;
|
| 630 |
+
color: #4a4a4a;
|
| 631 |
+
text-align: center;
|
| 632 |
+
margin-bottom: 20px;
|
| 633 |
+
}
|
| 634 |
+
#title-container h1 {
|
| 635 |
+
font-size: 2.5em;
|
| 636 |
+
font-weight: bold;
|
| 637 |
+
color: #ff9900;
|
| 638 |
+
}
|
| 639 |
+
#title-container h2 {
|
| 640 |
+
font-size: 1.2em;
|
| 641 |
+
color: #6c757d;
|
| 642 |
+
}
|
| 643 |
+
#intro-text {
|
| 644 |
+
font-size: 1em;
|
| 645 |
+
color: #6c757d;
|
| 646 |
+
margin: 50px;
|
| 647 |
+
text-align: center;
|
| 648 |
+
font-style: italic;
|
| 649 |
+
}
|
| 650 |
+
#prompt-output {
|
| 651 |
+
font-family: 'Courier New', monospace;
|
| 652 |
+
color: #5a5a5a;
|
| 653 |
+
font-size: 1.1em;
|
| 654 |
+
padding: 10px;
|
| 655 |
+
background-color: #f9f9f9;
|
| 656 |
+
border: 1px solid #ddd;
|
| 657 |
+
border-radius: 5px;
|
| 658 |
+
margin-top: 10px;
|
| 659 |
+
}
|
| 660 |
+
"""
|
| 661 |
+
|
| 662 |
+
# Title and description
|
| 663 |
+
title_html = """
|
| 664 |
+
<div id="title-container">
|
| 665 |
+
<h1>Spirit Animal Generator</h1>
|
| 666 |
+
<h2>Create your unique spirit animal with AI-assisted image generation.</h2>
|
| 667 |
+
</div>
|
| 668 |
+
"""
|
| 669 |
+
|
| 670 |
+
description_text = """
|
| 671 |
+
### Project Overview
|
| 672 |
+
Welcome to the Spirit Animal Generator! This tool leverages advanced AI technologies to create unique visualizations of spirit animals from both videos and images.
|
| 673 |
+
#### Key Features:
|
| 674 |
+
1. **Video Transformation**: Upload a driving video to generate a creative spirit animal animation.
|
| 675 |
+
2. **Image Creation**: Upload an image and customize the spirit animal type and background options.
|
| 676 |
+
3. **AI-Powered Prompting**: OpenAI's GPT generates descriptive prompts for each input.
|
| 677 |
+
4. **High-Quality Outputs**: Generated using Stable Diffusion and ControlNet for stunning visuals.
|
| 678 |
+
---
|
| 679 |
+
### How It Works:
|
| 680 |
+
1. **Upload Your Media**:
|
| 681 |
+
- Videos: Ensure the file is in MP4 format.
|
| 682 |
+
- Images: Use clear, high-resolution photos for better results.
|
| 683 |
+
2. **Customize Options**:
|
| 684 |
+
- For images, select the type of animal and background settings.
|
| 685 |
+
3. **View Your Results**:
|
| 686 |
+
- Videos will be transformed into animations.
|
| 687 |
+
- Images will produce customized visual art along with a generated prompt.
|
| 688 |
+
Discover your spirit animal and let your imagination run wild!
|
| 689 |
+
---
|
| 690 |
+
"""
|
| 691 |
+
|
| 692 |
+
with gr.Blocks() as demo:
|
| 693 |
+
gr.HTML(title_html)
|
| 694 |
+
gr.Markdown(description_text)
|
| 695 |
+
|
| 696 |
+
with gr.Tabs():
|
| 697 |
+
with gr.Tab("Generate Spirit Animal Image"):
|
| 698 |
+
gr.Markdown("Upload an image to generate a spirit animal.")
|
| 699 |
+
with gr.Row():
|
| 700 |
+
with gr.Column(scale=1):
|
| 701 |
+
image_input = gr.Image(type="filepath", label="Upload an image")
|
| 702 |
+
animal_type = gr.Radio(choices=["Single Animal", "Multiple Animals"], label="Animal Type", value="Single Animal")
|
| 703 |
+
background_option = gr.Radio(choices=["Preserve Background", "Don't Preserve Background"], label="Background Option", value="Preserve Background")
|
| 704 |
+
generate_image_button = gr.Button("Generate Image")
|
| 705 |
+
with gr.Column(scale=1):
|
| 706 |
+
generated_prompt = gr.Textbox(label="Generated Prompt")
|
| 707 |
+
generated_gallery = gr.Gallery(label="Generated Images")
|
| 708 |
+
|
| 709 |
+
generate_image_button.click(
|
| 710 |
+
fn=generate_spirit_animal,
|
| 711 |
+
inputs=[image_input, animal_type, background_option],
|
| 712 |
+
outputs=[generated_prompt, generated_gallery],
|
| 713 |
+
)
|
| 714 |
+
|
| 715 |
+
with gr.Tab("Generate Spirit Animal Video"):
|
| 716 |
+
gr.Markdown("Upload a driving video to generate a spirit animal video.")
|
| 717 |
+
with gr.Row():
|
| 718 |
+
with gr.Column(scale=1):
|
| 719 |
+
video_input = gr.Video(label="Upload a driving video (MP4 format)")
|
| 720 |
+
generate_video_button = gr.Button("Generate Video")
|
| 721 |
+
with gr.Column(scale=1):
|
| 722 |
+
video_output = gr.Video(label="Generated Spirit Animal Video")
|
| 723 |
+
|
| 724 |
+
generate_video_button.click(
|
| 725 |
+
fn=process_video,
|
| 726 |
+
inputs=video_input,
|
| 727 |
+
outputs=video_output,
|
| 728 |
+
)
|
| 729 |
+
|
| 730 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch == 2.1.2
|
| 2 |
+
torchvision==0.16.2
|
| 3 |
+
torchaudio==2.1.2
|
| 4 |
+
moviepy==1.0.3
|
| 5 |
+
imageio[ffmpeg]
|
| 6 |
+
pillow==10.4.0
|
| 7 |
+
tyro==0.8.5
|
| 8 |
+
onnxruntime-gpu==1.18.1
|
| 9 |
+
onnx==1.16.1
|
| 10 |
+
gradio==4.37.1
|
| 11 |
+
colorama
|
| 12 |
+
ffmpeg-python==0.2.0
|
| 13 |
+
mediapipe
|
| 14 |
+
rembg
|
| 15 |
+
huggingface_hub[cli]
|
| 16 |
+
opencv-python
|
| 17 |
+
matplotlib
|
| 18 |
+
diffusers
|
| 19 |
+
transformers
|
| 20 |
+
accelerate
|