Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,37 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
from peft import PeftModel
|
| 4 |
|
| 5 |
+
# Load the base model and the fine-tuned model
|
| 6 |
+
@st.cache_resource
|
| 7 |
+
def load_model():
|
| 8 |
+
base_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-Coder-3B-Instruct")
|
| 9 |
+
model = PeftModel.from_pretrained(base_model, "mohamedyd/Natural-Coder-3B-Instruct-V1")
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-3B-Instruct")
|
| 11 |
+
return model, tokenizer
|
| 12 |
+
|
| 13 |
+
model, tokenizer = load_model()
|
| 14 |
+
|
| 15 |
+
# Streamlit app
|
| 16 |
+
st.title("Natural-Coder-3B-Instruct-V1 Model Interaction")
|
| 17 |
+
|
| 18 |
+
# Text input for user prompt
|
| 19 |
+
user_input = st.text_area("Enter your prompt here:", height=150)
|
| 20 |
+
|
| 21 |
+
# Button to generate response
|
| 22 |
+
if st.button("Generate Response"):
|
| 23 |
+
if user_input:
|
| 24 |
+
# Tokenize the input
|
| 25 |
+
inputs = tokenizer(user_input, return_tensors="pt")
|
| 26 |
+
|
| 27 |
+
# Generate response
|
| 28 |
+
outputs = model.generate(**inputs, max_length=512, num_return_sequences=1)
|
| 29 |
+
|
| 30 |
+
# Decode the output
|
| 31 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 32 |
+
|
| 33 |
+
# Display the response
|
| 34 |
+
st.write("Model Response:")
|
| 35 |
+
st.write(response)
|
| 36 |
+
else:
|
| 37 |
+
st.write("Please enter a prompt to generate a response.")
|