Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import concurrent.futures as cf
|
| 2 |
+
import glob
|
| 3 |
+
import io
|
| 4 |
+
import os
|
| 5 |
+
import time
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from tempfile import NamedTemporaryFile
|
| 8 |
+
from typing import List, Literal
|
| 9 |
+
import re
|
| 10 |
+
from transformers import pipeline
|
| 11 |
+
from pydantic import BaseModel
|
| 12 |
+
|
| 13 |
+
# Initialize Hugging Face text generation model
|
| 14 |
+
text_generator = pipeline('text-generation', model='EleutherAI/gpt-neo-2.7B')
|
| 15 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 16 |
+
|
| 17 |
+
# Instruction templates (unchanged from your original code)
|
| 18 |
+
INSTRUCTION_TEMPLATES = {
|
| 19 |
+
"podcast": {
|
| 20 |
+
"intro": """Your task is to take the input text provided and turn it into a lively, engaging, informative podcast dialogue, in the style of NPR...""",
|
| 21 |
+
"text_instructions": "First, carefully read through the input text...",
|
| 22 |
+
"scratch_pad": """Brainstorm creative ways to discuss the main topics...""",
|
| 23 |
+
"prelude": """Now that you have brainstormed ideas and created a rough outline...""",
|
| 24 |
+
"dialog": """Write a very long, engaging, informative podcast dialogue..."""
|
| 25 |
+
}
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
# Function to update instruction fields based on template selection
|
| 29 |
+
def update_instructions(template):
|
| 30 |
+
return (
|
| 31 |
+
INSTRUCTION_TEMPLATES[template]["intro"],
|
| 32 |
+
INSTRUCTION_TEMPLATES[template]["text_instructions"],
|
| 33 |
+
INSTRUCTION_TEMPLATES[template]["scratch_pad"],
|
| 34 |
+
INSTRUCTION_TEMPLATES[template]["prelude"],
|
| 35 |
+
INSTRUCTION_TEMPLATES[template]["dialog"]
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
# Define the structure of dialogue
|
| 39 |
+
class DialogueItem(BaseModel):
|
| 40 |
+
text: str
|
| 41 |
+
speaker: Literal["speaker-1", "speaker-2"]
|
| 42 |
+
|
| 43 |
+
class Dialogue(BaseModel):
|
| 44 |
+
scratchpad: str
|
| 45 |
+
dialogue: List[DialogueItem]
|
| 46 |
+
|
| 47 |
+
# Function to read README.md
|
| 48 |
+
def read_readme():
|
| 49 |
+
readme_path = Path("README.md")
|
| 50 |
+
if readme_path.exists():
|
| 51 |
+
with open(readme_path, "r") as file:
|
| 52 |
+
content = file.read()
|
| 53 |
+
content = re.sub(r'--.*?--', '', content, flags=re.DOTALL)
|
| 54 |
+
return content
|
| 55 |
+
else:
|
| 56 |
+
return "README.md not found. Please check the repository for more information."
|
| 57 |
+
|
| 58 |
+
# Hugging Face-based dialogue generation function
|
| 59 |
+
def generate_dialogue(text: str, intro_instructions: str, text_instructions: str,
|
| 60 |
+
scratch_pad_instructions: str, prelude_dialog: str,
|
| 61 |
+
podcast_dialog_instructions: str, edited_transcript: str = None,
|
| 62 |
+
user_feedback: str = None) -> str:
|
| 63 |
+
# Combine instructions and text into a prompt
|
| 64 |
+
full_prompt = f"""
|
| 65 |
+
{intro_instructions}
|
| 66 |
+
|
| 67 |
+
Original text:
|
| 68 |
+
{text}
|
| 69 |
+
|
| 70 |
+
{text_instructions}
|
| 71 |
+
|
| 72 |
+
Brainstorming:
|
| 73 |
+
{scratch_pad_instructions}
|
| 74 |
+
|
| 75 |
+
Prelude:
|
| 76 |
+
{prelude_dialog}
|
| 77 |
+
|
| 78 |
+
Dialogue:
|
| 79 |
+
{podcast_dialog_instructions}
|
| 80 |
+
|
| 81 |
+
{edited_transcript if edited_transcript else ""}
|
| 82 |
+
{user_feedback if user_feedback else ""}
|
| 83 |
+
"""
|
| 84 |
+
|
| 85 |
+
# Generate text using Hugging Face model
|
| 86 |
+
generated = text_generator(full_prompt, max_length=1000) # Adjust max_length as needed
|
| 87 |
+
return generated[0]['generated_text'] # Extract generated text from the response
|
| 88 |
+
|
| 89 |
+
# Function to handle audio generation (could be expanded later)
|
| 90 |
+
def get_mp3(text: str, voice: str, audio_model: str) -> bytes:
|
| 91 |
+
# Placeholder for audio generation; currently not implemented
|
| 92 |
+
# You can use text-to-speech services or local TTS engines
|
| 93 |
+
return b""
|
| 94 |
+
|
| 95 |
+
# Main audio generation function (adapted for Hugging Face text generation)
|
| 96 |
+
def generate_audio(
|
| 97 |
+
files: list,
|
| 98 |
+
text_model: str = "EleutherAI/gpt-neo-2.7B",
|
| 99 |
+
audio_model: str = "tts-1",
|
| 100 |
+
speaker_1_voice: str = "alloy",
|
| 101 |
+
speaker_2_voice: str = "echo",
|
| 102 |
+
intro_instructions: str = '',
|
| 103 |
+
text_instructions: str = '',
|
| 104 |
+
scratch_pad_instructions: str = '',
|
| 105 |
+
prelude_dialog: str = '',
|
| 106 |
+
podcast_dialog_instructions: str = '',
|
| 107 |
+
edited_transcript: str = None,
|
| 108 |
+
user_feedback: str = None,
|
| 109 |
+
original_text: str = None,
|
| 110 |
+
debug = False,
|
| 111 |
+
) -> tuple:
|
| 112 |
+
|
| 113 |
+
# Combine input text from files
|
| 114 |
+
combined_text = original_text or ""
|
| 115 |
+
if not combined_text:
|
| 116 |
+
for file in files:
|
| 117 |
+
with Path(file).open("rb") as f:
|
| 118 |
+
text = f.read().decode('utf-8') # Assuming the PDF text is extracted as UTF-8
|
| 119 |
+
combined_text += text + "\n\n"
|
| 120 |
+
|
| 121 |
+
# Generate the dialogue using Hugging Face
|
| 122 |
+
llm_output = generate_dialogue(
|
| 123 |
+
combined_text,
|
| 124 |
+
intro_instructions=intro_instructions,
|
| 125 |
+
text_instructions=text_instructions,
|
| 126 |
+
scratch_pad_instructions=scratch_pad_instructions,
|
| 127 |
+
prelude_dialog=prelude_dialog,
|
| 128 |
+
podcast_dialog_instructions=podcast_dialog_instructions,
|
| 129 |
+
edited_transcript=edited_transcript,
|
| 130 |
+
user_feedback=user_feedback
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
# Placeholder for audio (since TTS implementation is omitted)
|
| 134 |
+
audio = b""
|
| 135 |
+
transcript = llm_output
|
| 136 |
+
characters = len(llm_output)
|
| 137 |
+
|
| 138 |
+
# Generating audio (placeholder logic)
|
| 139 |
+
with cf.ThreadPoolExecutor() as executor:
|
| 140 |
+
futures = []
|
| 141 |
+
for line in llm_output.split('\n'):
|
| 142 |
+
future = executor.submit(get_mp3, line, speaker_1_voice, audio_model)
|
| 143 |
+
futures.append(future)
|
| 144 |
+
characters += len(line)
|
| 145 |
+
|
| 146 |
+
for future in futures:
|
| 147 |
+
audio_chunk = future.result()
|
| 148 |
+
audio += audio_chunk
|
| 149 |
+
|
| 150 |
+
temporary_directory = "./tmp/"
|
| 151 |
+
os.makedirs(temporary_directory, exist_ok=True)
|
| 152 |
+
|
| 153 |
+
# Save audio to a temporary file
|
| 154 |
+
temporary_file = NamedTemporaryFile(dir=temporary_directory, delete=False, suffix=".mp3")
|
| 155 |
+
temporary_file.write(audio)
|
| 156 |
+
temporary_file.close()
|
| 157 |
+
|
| 158 |
+
return temporary_file.name, transcript, combined_text
|
| 159 |
+
|
| 160 |
+
# Example call to generate audio
|
| 161 |
+
files = ["sample.pdf"] # Replace with your actual PDF file paths
|
| 162 |
+
audio_file, transcript, original_text = generate_audio(
|
| 163 |
+
files=files,
|
| 164 |
+
intro_instructions="Your task is to create a podcast...",
|
| 165 |
+
text_instructions="Extract the main points...",
|
| 166 |
+
scratch_pad_instructions="Brainstorm how to present the topics...",
|
| 167 |
+
prelude_dialog="Now let's write the podcast dialogue...",
|
| 168 |
+
podcast_dialog_instructions="Write a long and engaging podcast dialogue."
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
# Print output transcript (or save it as needed)
|
| 172 |
+
print(transcript)
|
| 173 |
+
|
| 174 |
+
# Read and print README content
|
| 175 |
+
print(read_readme())
|