Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +18 -35
src/streamlit_app.py
CHANGED
|
@@ -1,35 +1,32 @@
|
|
| 1 |
import os
|
| 2 |
import streamlit as st
|
| 3 |
|
| 4 |
-
# Set app root dynamically
|
| 5 |
-
APP_ROOT = os.path.dirname(os.path.abspath(__file__))
|
| 6 |
-
MODEL_CACHE_DIR = os.path.join(APP_ROOT, "model_cache")
|
| 7 |
-
|
| 8 |
-
# Set SpeechBrain cache path
|
| 9 |
-
os.environ["SPEECHBRAIN_CACHE"] = MODEL_CACHE_DIR
|
| 10 |
-
|
| 11 |
-
import streamlit as st
|
| 12 |
-
import tempfile
|
| 13 |
-
import requests
|
| 14 |
-
import subprocess
|
| 15 |
-
import torchaudio
|
| 16 |
from speechbrain.pretrained.interfaces import foreign_class
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
@st.cache_resource
|
| 20 |
def load_model():
|
| 21 |
try:
|
| 22 |
return foreign_class(
|
| 23 |
source="Jzuluaga/accent-id-commonaccent_xlsr-en-english",
|
| 24 |
pymodule_file="custom_interface.py",
|
| 25 |
-
classname="CustomEncoderWav2vec2Classifier"
|
| 26 |
-
savedir=MODEL_CACHE_DIR
|
| 27 |
)
|
| 28 |
except Exception as e:
|
| 29 |
st.error(f"β Model failed to load: {e}")
|
| 30 |
raise
|
| 31 |
-
|
| 32 |
-
# Download video from
|
| 33 |
def download_video(url, temp_dir):
|
| 34 |
video_path = os.path.join(temp_dir, "video.mp4")
|
| 35 |
r = requests.get(url, stream=True)
|
|
@@ -38,11 +35,10 @@ def download_video(url, temp_dir):
|
|
| 38 |
f.write(chunk)
|
| 39 |
return video_path
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
def extract_audio(video_path, temp_dir):
|
| 44 |
audio_path = os.path.join(temp_dir, "audio.wav")
|
| 45 |
-
ffmpeg_path = imageio_ffmpeg.get_ffmpeg_exe()
|
| 46 |
|
| 47 |
command = [
|
| 48 |
ffmpeg_path,
|
|
@@ -57,27 +53,16 @@ def extract_audio(video_path, temp_dir):
|
|
| 57 |
raise RuntimeError(f"FFmpeg failed: {e}")
|
| 58 |
return audio_path
|
| 59 |
|
|
|
|
| 60 |
def classify_accent(audio_path, model):
|
| 61 |
out_prob, score, index, label = model.classify_file(audio_path)
|
| 62 |
return label, score * 100, out_prob
|
| 63 |
|
| 64 |
-
#
|
| 65 |
-
st.set_page_config(page_title="Accent Classifier", layout="centered")
|
| 66 |
-
st.title("English Accent Detection")
|
| 67 |
-
|
| 68 |
-
st.markdown("Paste a link or upload a video to analyze the speaker's English accent.")
|
| 69 |
-
|
| 70 |
-
video_url = st.text_input("Paste a direct link to a video (MP4 URL)")
|
| 71 |
-
st.markdown("**OR**")
|
| 72 |
-
uploaded_file = st.file_uploader("Upload a video file (MP4 format)", type=["mp4"])
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
if uploaded_file or video_url:
|
| 77 |
with st.spinner("Processing video..."):
|
| 78 |
try:
|
| 79 |
with tempfile.TemporaryDirectory() as temp_dir:
|
| 80 |
-
# Get video path from upload or URL
|
| 81 |
if uploaded_file:
|
| 82 |
video_path = os.path.join(temp_dir, uploaded_file.name)
|
| 83 |
with open(video_path, 'wb') as f:
|
|
@@ -89,11 +74,9 @@ if uploaded_file or video_url:
|
|
| 89 |
model = load_model()
|
| 90 |
label, confidence, probs = classify_accent(audio_path, model)
|
| 91 |
|
| 92 |
-
# Ensure proper formatting
|
| 93 |
label = label if isinstance(label, str) else label[0]
|
| 94 |
st.success(f"Detected Accent: **{label}**")
|
| 95 |
-
st.info(f"Confidence Score: **{confidence
|
| 96 |
|
| 97 |
-
|
| 98 |
except Exception as e:
|
| 99 |
st.error(f"β Error: {str(e)}")
|
|
|
|
| 1 |
import os
|
| 2 |
import streamlit as st
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from speechbrain.pretrained.interfaces import foreign_class
|
| 5 |
|
| 6 |
+
# Streamlit config
|
| 7 |
+
st.set_page_config(page_title="Accent Classifier", layout="centered")
|
| 8 |
+
st.title("English Accent Detection")
|
| 9 |
+
st.markdown("Paste a link or upload a video to analyze the speaker's English accent.")
|
| 10 |
|
| 11 |
+
# UI Inputs
|
| 12 |
+
video_url = st.text_input("Paste a direct link to a video (MP4 URL)")
|
| 13 |
+
st.markdown("**OR**")
|
| 14 |
+
uploaded_file = st.file_uploader("Upload a video file (MP4 format)", type=["mp4"])
|
| 15 |
+
|
| 16 |
+
# Load model (SpeechBrain default cache location)
|
| 17 |
@st.cache_resource
|
| 18 |
def load_model():
|
| 19 |
try:
|
| 20 |
return foreign_class(
|
| 21 |
source="Jzuluaga/accent-id-commonaccent_xlsr-en-english",
|
| 22 |
pymodule_file="custom_interface.py",
|
| 23 |
+
classname="CustomEncoderWav2vec2Classifier"
|
|
|
|
| 24 |
)
|
| 25 |
except Exception as e:
|
| 26 |
st.error(f"β Model failed to load: {e}")
|
| 27 |
raise
|
| 28 |
+
|
| 29 |
+
# Download video from URL
|
| 30 |
def download_video(url, temp_dir):
|
| 31 |
video_path = os.path.join(temp_dir, "video.mp4")
|
| 32 |
r = requests.get(url, stream=True)
|
|
|
|
| 35 |
f.write(chunk)
|
| 36 |
return video_path
|
| 37 |
|
| 38 |
+
# Extract audio using bundled ffmpeg
|
|
|
|
| 39 |
def extract_audio(video_path, temp_dir):
|
| 40 |
audio_path = os.path.join(temp_dir, "audio.wav")
|
| 41 |
+
ffmpeg_path = imageio_ffmpeg.get_ffmpeg_exe()
|
| 42 |
|
| 43 |
command = [
|
| 44 |
ffmpeg_path,
|
|
|
|
| 53 |
raise RuntimeError(f"FFmpeg failed: {e}")
|
| 54 |
return audio_path
|
| 55 |
|
| 56 |
+
# Run classification
|
| 57 |
def classify_accent(audio_path, model):
|
| 58 |
out_prob, score, index, label = model.classify_file(audio_path)
|
| 59 |
return label, score * 100, out_prob
|
| 60 |
|
| 61 |
+
# Main logic
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
if uploaded_file or video_url:
|
| 63 |
with st.spinner("Processing video..."):
|
| 64 |
try:
|
| 65 |
with tempfile.TemporaryDirectory() as temp_dir:
|
|
|
|
| 66 |
if uploaded_file:
|
| 67 |
video_path = os.path.join(temp_dir, uploaded_file.name)
|
| 68 |
with open(video_path, 'wb') as f:
|
|
|
|
| 74 |
model = load_model()
|
| 75 |
label, confidence, probs = classify_accent(audio_path, model)
|
| 76 |
|
|
|
|
| 77 |
label = label if isinstance(label, str) else label[0]
|
| 78 |
st.success(f"Detected Accent: **{label}**")
|
| 79 |
+
st.info(f"Confidence Score: **{confidence:.1f}%**")
|
| 80 |
|
|
|
|
| 81 |
except Exception as e:
|
| 82 |
st.error(f"β Error: {str(e)}")
|