Spaces:
Runtime error
Runtime error
Commit
·
dba440b
1
Parent(s):
42a8ae5
router fix
Browse files- backend/app.py +24 -62
backend/app.py
CHANGED
|
@@ -1,19 +1,18 @@
|
|
| 1 |
-
from fastapi import FastAPI, File, UploadFile
|
| 2 |
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
from fastapi.staticfiles import StaticFiles
|
| 4 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import io
|
| 6 |
import os
|
|
|
|
| 7 |
import time
|
| 8 |
import numpy as np
|
| 9 |
-
import
|
| 10 |
-
import base64
|
| 11 |
from io import BytesIO
|
| 12 |
-
from fastapi.responses import JSONResponse
|
| 13 |
-
from fastapi import Query
|
| 14 |
-
from typing import List
|
| 15 |
-
import gdown
|
| 16 |
-
|
| 17 |
|
| 18 |
segmentationColors = [
|
| 19 |
(255, 0, 0),
|
|
@@ -32,7 +31,6 @@ segmentationColors = [
|
|
| 32 |
|
| 33 |
data_path = os.getenv('DATA_PATH')
|
| 34 |
if not os.path.exists(data_path):
|
| 35 |
-
# raise FileNotFoundError(f"The data file at {data_path} was not found.")
|
| 36 |
url = os.getenv('DATA_URL')
|
| 37 |
file_id = url.split('/')[-2]
|
| 38 |
direct_link = f"https://drive.google.com/uc?id={file_id}"
|
|
@@ -54,59 +52,33 @@ app.add_middleware(
|
|
| 54 |
allow_headers=["*"],
|
| 55 |
)
|
| 56 |
|
| 57 |
-
#
|
| 58 |
-
# Serve the React frontend
|
| 59 |
frontend_path = "/app/frontend/build"
|
| 60 |
if os.path.exists(frontend_path):
|
| 61 |
app.mount("/", StaticFiles(directory=frontend_path, html=True), name="frontend")
|
| 62 |
else:
|
| 63 |
print(f"Warning: Frontend build directory '{frontend_path}' does not exist.")
|
| 64 |
|
| 65 |
-
|
|
|
|
| 66 |
|
| 67 |
def overlay_mask(base_image, mask_image, color_idx):
|
| 68 |
-
"""
|
| 69 |
-
Given the base_image and the 0/1 mask, overlay the mask with the color indexed by the color_idx.
|
| 70 |
-
"""
|
| 71 |
-
# Convert inputs to NumPy arrays
|
| 72 |
overlay = np.array(base_image, dtype=np.uint8)
|
| 73 |
mask = np.array(mask_image).astype(bool)
|
| 74 |
-
|
| 75 |
if overlay.shape[:2] != mask.shape:
|
| 76 |
raise ValueError("Base image and mask must have the same dimensions.")
|
| 77 |
-
|
| 78 |
-
# Ensure color index is valid
|
| 79 |
if not (0 <= color_idx < len(segmentationColors)):
|
| 80 |
raise ValueError(f"Color index {color_idx} is out of bounds.")
|
| 81 |
-
|
| 82 |
-
# Retrieve color
|
| 83 |
color = np.array(segmentationColors[color_idx], dtype=np.uint8)
|
| 84 |
-
|
| 85 |
-
# Print debugging info (optional)
|
| 86 |
-
print(f'Overlay shape: {overlay.shape}')
|
| 87 |
-
print(f'Mask shape: {mask.shape}')
|
| 88 |
-
print(f'Color idx: {color_idx}')
|
| 89 |
-
print(f'Color: {color}')
|
| 90 |
-
|
| 91 |
-
# Apply color blending
|
| 92 |
overlay[mask] = (overlay[mask] * 0.4 + color * 0.6).astype(np.uint8)
|
| 93 |
-
|
| 94 |
-
# Convert back to Image
|
| 95 |
return Image.fromarray(overlay)
|
| 96 |
|
| 97 |
-
|
| 98 |
def convert_to_pil(image):
|
| 99 |
-
"""
|
| 100 |
-
Ensure the image is a PIL Image.
|
| 101 |
-
"""
|
| 102 |
if isinstance(image, np.ndarray):
|
| 103 |
return Image.fromarray(image)
|
| 104 |
return image
|
| 105 |
|
| 106 |
async def return_thumbnails():
|
| 107 |
-
"""
|
| 108 |
-
Return a list of thumbnail images.
|
| 109 |
-
"""
|
| 110 |
thumbnails = []
|
| 111 |
for item in data:
|
| 112 |
pil_image = convert_to_pil(item['image'])
|
|
@@ -114,67 +86,56 @@ async def return_thumbnails():
|
|
| 114 |
return thumbnails
|
| 115 |
|
| 116 |
def rgb_to_hex(rgb):
|
| 117 |
-
"""Convert an RGB tuple to a HEX string."""
|
| 118 |
return "#{:02x}{:02x}{:02x}".format(rgb[0], rgb[1], rgb[2])
|
| 119 |
|
| 120 |
async def return_state_data(state):
|
| 121 |
-
print(state)
|
| 122 |
-
"""
|
| 123 |
-
Return state-specific data including overlays and object validity.
|
| 124 |
-
"""
|
| 125 |
image_data = data[state['image_index']]
|
| 126 |
base_image = convert_to_pil(image_data['image'])
|
| 127 |
-
|
| 128 |
response = {
|
| 129 |
'mask_overlayed_image': base_image,
|
| 130 |
'valid_object_color_tuples': [],
|
| 131 |
'invalid_objects': []
|
| 132 |
}
|
| 133 |
-
|
| 134 |
mask_data = image_data['mask_data'].get(state['detail_level'], {})
|
| 135 |
-
# print(mask_data)
|
| 136 |
-
|
| 137 |
for object_type, mask_info in mask_data.items():
|
| 138 |
if mask_info['valid']:
|
| 139 |
idx = len(response['valid_object_color_tuples'])
|
| 140 |
if idx in state['object_list']:
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
| 144 |
color = segmentationColors[idx]
|
| 145 |
response['valid_object_color_tuples'].append((object_type, rgb_to_hex(color)))
|
| 146 |
else:
|
| 147 |
response['invalid_objects'].append(object_type)
|
| 148 |
-
|
| 149 |
buffer = BytesIO()
|
| 150 |
-
response['mask_overlayed_image'].save(buffer, format="PNG")
|
| 151 |
-
base64_str = base64.b64encode(buffer.getvalue()).decode("utf-8")
|
| 152 |
response['mask_overlayed_image'] = base64_str
|
| 153 |
return response
|
| 154 |
|
| 155 |
-
@
|
| 156 |
async def return_thumbnails_endpoint():
|
| 157 |
thumbnails = await return_thumbnails()
|
| 158 |
encoded_images = []
|
| 159 |
for thumbnail in thumbnails:
|
| 160 |
buffer = BytesIO()
|
| 161 |
-
thumbnail.save(buffer, format="PNG")
|
| 162 |
-
base64_str = base64.b64encode(buffer.getvalue()).decode("utf-8")
|
| 163 |
encoded_images.append(base64_str)
|
| 164 |
return JSONResponse(content={"thumbnails": encoded_images})
|
| 165 |
|
| 166 |
-
@
|
| 167 |
async def return_state_data_endpoint(
|
| 168 |
image_index: int = Query(...),
|
| 169 |
detail_level: int = Query(...),
|
| 170 |
object_list: str = Query(...)
|
| 171 |
):
|
| 172 |
-
print(object_list)
|
| 173 |
if object_list == 'None':
|
| 174 |
object_list = []
|
| 175 |
else:
|
| 176 |
object_list = [int(x) for x in object_list.split(",")]
|
| 177 |
-
print(object_list)
|
| 178 |
state = {
|
| 179 |
"image_index": image_index,
|
| 180 |
"detail_level": detail_level,
|
|
@@ -183,8 +144,9 @@ async def return_state_data_endpoint(
|
|
| 183 |
response = await return_state_data(state)
|
| 184 |
return response
|
| 185 |
|
| 186 |
-
|
|
|
|
| 187 |
|
| 188 |
if __name__ == "__main__":
|
| 189 |
import uvicorn
|
| 190 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
| 1 |
+
from fastapi import FastAPI, File, UploadFile, Query
|
| 2 |
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
from fastapi.staticfiles import StaticFiles
|
| 4 |
+
from fastapi.responses import JSONResponse
|
| 5 |
+
from fastapi.routing import APIRouter
|
| 6 |
+
from typing import List
|
| 7 |
+
import base64
|
| 8 |
+
import gdown
|
| 9 |
import io
|
| 10 |
import os
|
| 11 |
+
import pickle
|
| 12 |
import time
|
| 13 |
import numpy as np
|
| 14 |
+
from PIL import Image
|
|
|
|
| 15 |
from io import BytesIO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
segmentationColors = [
|
| 18 |
(255, 0, 0),
|
|
|
|
| 31 |
|
| 32 |
data_path = os.getenv('DATA_PATH')
|
| 33 |
if not os.path.exists(data_path):
|
|
|
|
| 34 |
url = os.getenv('DATA_URL')
|
| 35 |
file_id = url.split('/')[-2]
|
| 36 |
direct_link = f"https://drive.google.com/uc?id={file_id}"
|
|
|
|
| 52 |
allow_headers=["*"],
|
| 53 |
)
|
| 54 |
|
| 55 |
+
# Serve the React frontend if available
|
|
|
|
| 56 |
frontend_path = "/app/frontend/build"
|
| 57 |
if os.path.exists(frontend_path):
|
| 58 |
app.mount("/", StaticFiles(directory=frontend_path, html=True), name="frontend")
|
| 59 |
else:
|
| 60 |
print(f"Warning: Frontend build directory '{frontend_path}' does not exist.")
|
| 61 |
|
| 62 |
+
# Create a router for the API endpoints
|
| 63 |
+
router = APIRouter()
|
| 64 |
|
| 65 |
def overlay_mask(base_image, mask_image, color_idx):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
overlay = np.array(base_image, dtype=np.uint8)
|
| 67 |
mask = np.array(mask_image).astype(bool)
|
|
|
|
| 68 |
if overlay.shape[:2] != mask.shape:
|
| 69 |
raise ValueError("Base image and mask must have the same dimensions.")
|
|
|
|
|
|
|
| 70 |
if not (0 <= color_idx < len(segmentationColors)):
|
| 71 |
raise ValueError(f"Color index {color_idx} is out of bounds.")
|
|
|
|
|
|
|
| 72 |
color = np.array(segmentationColors[color_idx], dtype=np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
overlay[mask] = (overlay[mask] * 0.4 + color * 0.6).astype(np.uint8)
|
|
|
|
|
|
|
| 74 |
return Image.fromarray(overlay)
|
| 75 |
|
|
|
|
| 76 |
def convert_to_pil(image):
|
|
|
|
|
|
|
|
|
|
| 77 |
if isinstance(image, np.ndarray):
|
| 78 |
return Image.fromarray(image)
|
| 79 |
return image
|
| 80 |
|
| 81 |
async def return_thumbnails():
|
|
|
|
|
|
|
|
|
|
| 82 |
thumbnails = []
|
| 83 |
for item in data:
|
| 84 |
pil_image = convert_to_pil(item['image'])
|
|
|
|
| 86 |
return thumbnails
|
| 87 |
|
| 88 |
def rgb_to_hex(rgb):
|
|
|
|
| 89 |
return "#{:02x}{:02x}{:02x}".format(rgb[0], rgb[1], rgb[2])
|
| 90 |
|
| 91 |
async def return_state_data(state):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
image_data = data[state['image_index']]
|
| 93 |
base_image = convert_to_pil(image_data['image'])
|
|
|
|
| 94 |
response = {
|
| 95 |
'mask_overlayed_image': base_image,
|
| 96 |
'valid_object_color_tuples': [],
|
| 97 |
'invalid_objects': []
|
| 98 |
}
|
|
|
|
| 99 |
mask_data = image_data['mask_data'].get(state['detail_level'], {})
|
|
|
|
|
|
|
| 100 |
for object_type, mask_info in mask_data.items():
|
| 101 |
if mask_info['valid']:
|
| 102 |
idx = len(response['valid_object_color_tuples'])
|
| 103 |
if idx in state['object_list']:
|
| 104 |
+
response['mask_overlayed_image'] = overlay_mask(
|
| 105 |
+
response['mask_overlayed_image'],
|
| 106 |
+
mask_info['mask'], idx
|
| 107 |
+
)
|
| 108 |
color = segmentationColors[idx]
|
| 109 |
response['valid_object_color_tuples'].append((object_type, rgb_to_hex(color)))
|
| 110 |
else:
|
| 111 |
response['invalid_objects'].append(object_type)
|
|
|
|
| 112 |
buffer = BytesIO()
|
| 113 |
+
response['mask_overlayed_image'].save(buffer, format="PNG")
|
| 114 |
+
base64_str = base64.b64encode(buffer.getvalue()).decode("utf-8")
|
| 115 |
response['mask_overlayed_image'] = base64_str
|
| 116 |
return response
|
| 117 |
|
| 118 |
+
@router.get("/return_thumbnails")
|
| 119 |
async def return_thumbnails_endpoint():
|
| 120 |
thumbnails = await return_thumbnails()
|
| 121 |
encoded_images = []
|
| 122 |
for thumbnail in thumbnails:
|
| 123 |
buffer = BytesIO()
|
| 124 |
+
thumbnail.save(buffer, format="PNG")
|
| 125 |
+
base64_str = base64.b64encode(buffer.getvalue()).decode("utf-8")
|
| 126 |
encoded_images.append(base64_str)
|
| 127 |
return JSONResponse(content={"thumbnails": encoded_images})
|
| 128 |
|
| 129 |
+
@router.get("/return_state_data")
|
| 130 |
async def return_state_data_endpoint(
|
| 131 |
image_index: int = Query(...),
|
| 132 |
detail_level: int = Query(...),
|
| 133 |
object_list: str = Query(...)
|
| 134 |
):
|
|
|
|
| 135 |
if object_list == 'None':
|
| 136 |
object_list = []
|
| 137 |
else:
|
| 138 |
object_list = [int(x) for x in object_list.split(",")]
|
|
|
|
| 139 |
state = {
|
| 140 |
"image_index": image_index,
|
| 141 |
"detail_level": detail_level,
|
|
|
|
| 144 |
response = await return_state_data(state)
|
| 145 |
return response
|
| 146 |
|
| 147 |
+
# Include the router with a prefix, making endpoints accessible under /api
|
| 148 |
+
app.include_router(router, prefix="/api")
|
| 149 |
|
| 150 |
if __name__ == "__main__":
|
| 151 |
import uvicorn
|
| 152 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|