Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- app.py +79 -0
- model.joblib +3 -0
- requirements.txt +3 -0
- train.py +76 -0
app.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import uuid
|
| 3 |
+
import joblib
|
| 4 |
+
import json
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import pandas as pd
|
| 8 |
+
|
| 9 |
+
# from huggingface_hub import CommitScheduler
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
|
| 14 |
+
# log_folder = log_file.parent
|
| 15 |
+
|
| 16 |
+
# scheduler = CommitScheduler(
|
| 17 |
+
# repo_id="machine-failure-logs",
|
| 18 |
+
# repo_type="dataset",
|
| 19 |
+
# folder_path=log_folder,
|
| 20 |
+
# path_in_repo="data",
|
| 21 |
+
# every=2
|
| 22 |
+
# )
|
| 23 |
+
|
| 24 |
+
machine_failure_predictor = joblib.load('model.joblib')
|
| 25 |
+
|
| 26 |
+
air_temperature_input = gr.Number(label='Air temperature [K]')
|
| 27 |
+
process_temperature_input = gr.Number(label='Process temperature [K]')
|
| 28 |
+
rotational_speed_input = gr.Number(label='Rotational speed [rpm]')
|
| 29 |
+
torque_input = gr.Number(label='Torque [Nm]')
|
| 30 |
+
tool_wear_input = gr.Number(label='Tool wear [min]')
|
| 31 |
+
type_input = gr.Dropdown(
|
| 32 |
+
['L', 'M', 'H'],
|
| 33 |
+
label='Type'
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
model_output = gr.Label(label="Machine failure")
|
| 37 |
+
|
| 38 |
+
def predict_machine_failure(air_temperature, process_temperature, rotational_speed, torque, tool_wear, type):
|
| 39 |
+
sample = {
|
| 40 |
+
'Air temperature [K]': air_temperature,
|
| 41 |
+
'Process temperature [K]': process_temperature,
|
| 42 |
+
'Rotational speed [rpm]': rotational_speed,
|
| 43 |
+
'Torque [Nm]': torque,
|
| 44 |
+
'Tool wear [min]': tool_wear,
|
| 45 |
+
'Type': type
|
| 46 |
+
}
|
| 47 |
+
data_point = pd.DataFrame([sample])
|
| 48 |
+
prediction = machine_failure_predictor.predict(data_point).tolist()
|
| 49 |
+
|
| 50 |
+
# with scheduler.lock:
|
| 51 |
+
# with log_file.open("a") as f:
|
| 52 |
+
# f.write(json.dumps(
|
| 53 |
+
# {
|
| 54 |
+
# 'Air temperature [K]': air_temperature,
|
| 55 |
+
# 'Process temperature [K]': process_temperature,
|
| 56 |
+
# 'Rotational speed [rpm]': rotational_speed,
|
| 57 |
+
# 'Torque [Nm]': torque,
|
| 58 |
+
# 'Tool wear [min]': tool_wear,
|
| 59 |
+
# 'Type': type,
|
| 60 |
+
# 'prediction': prediction[0]
|
| 61 |
+
# }
|
| 62 |
+
# ))
|
| 63 |
+
# f.write("\n")
|
| 64 |
+
|
| 65 |
+
return prediction[0]
|
| 66 |
+
|
| 67 |
+
demo = gr.Interface(
|
| 68 |
+
fn=predict_machine_failure,
|
| 69 |
+
inputs=[air_temperature_input, process_temperature_input, rotational_speed_input,
|
| 70 |
+
torque_input, tool_wear_input, type_input],
|
| 71 |
+
outputs=model_output,
|
| 72 |
+
title="Machine Failure Predictor",
|
| 73 |
+
description="This API allows you to predict the machine failure status of an equipment",
|
| 74 |
+
allow_flagging="auto",
|
| 75 |
+
concurrency_limit=8
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
demo.queue()
|
| 79 |
+
demo.launch(share=False)
|
model.joblib
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a0db284be28e1303ab3612a3a6e35076ff8e9e32c035dd4e2ffdf9635b940780
|
| 3 |
+
size 3838
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
scikit-learn==1.2.2
|
| 2 |
+
joblib
|
| 3 |
+
gradio
|
train.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import joblib
|
| 3 |
+
|
| 4 |
+
from sklearn.datasets import fetch_openml
|
| 5 |
+
|
| 6 |
+
from sklearn.preprocessing import StandardScaler, OneHotEncoder
|
| 7 |
+
from sklearn.compose import make_column_transformer
|
| 8 |
+
|
| 9 |
+
from sklearn.pipeline import make_pipeline
|
| 10 |
+
|
| 11 |
+
from sklearn.model_selection import train_test_split, RandomizedSearchCV
|
| 12 |
+
|
| 13 |
+
from sklearn.linear_model import LogisticRegression
|
| 14 |
+
from sklearn.metrics import accuracy_score, classification_report
|
| 15 |
+
|
| 16 |
+
dataset = fetch_openml(data_id=42890, as_frame=True, parser="auto")
|
| 17 |
+
|
| 18 |
+
data_df = dataset.data
|
| 19 |
+
|
| 20 |
+
target = 'Machine failure'
|
| 21 |
+
numeric_features = [
|
| 22 |
+
'Air temperature [K]',
|
| 23 |
+
'Process temperature [K]',
|
| 24 |
+
'Rotational speed [rpm]',
|
| 25 |
+
'Torque [Nm]',
|
| 26 |
+
'Tool wear [min]'
|
| 27 |
+
]
|
| 28 |
+
categorical_features = ['Type']
|
| 29 |
+
|
| 30 |
+
print("Creating data subsets")
|
| 31 |
+
|
| 32 |
+
X = data_df[numeric_features + categorical_features]
|
| 33 |
+
y = data_df[target]
|
| 34 |
+
|
| 35 |
+
Xtrain, Xtest, ytrain, ytest = train_test_split(
|
| 36 |
+
X, y,
|
| 37 |
+
test_size=0.2,
|
| 38 |
+
random_state=42
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
preprocessor = make_column_transformer(
|
| 42 |
+
(StandardScaler(), numeric_features),
|
| 43 |
+
(OneHotEncoder(handle_unknown='ignore'), categorical_features)
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
model_logistic_regression = LogisticRegression(n_jobs=-1)
|
| 47 |
+
|
| 48 |
+
print("Estimating Best Model Pipeline")
|
| 49 |
+
|
| 50 |
+
model_pipeline = make_pipeline(
|
| 51 |
+
preprocessor,
|
| 52 |
+
model_logistic_regression
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
param_distribution = {
|
| 56 |
+
"logisticregression__C": [0.001, 0.01, 0.1, 0.5, 1, 5, 10]
|
| 57 |
+
}
|
| 58 |
+
|
| 59 |
+
rand_search_cv = RandomizedSearchCV(
|
| 60 |
+
model_pipeline,
|
| 61 |
+
param_distribution,
|
| 62 |
+
n_iter=3,
|
| 63 |
+
cv=3,
|
| 64 |
+
random_state=42
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
rand_search_cv.fit(Xtrain, ytrain)
|
| 68 |
+
|
| 69 |
+
print("Logging Metrics")
|
| 70 |
+
print(f"Accuracy: {rand_search_cv.best_score_}")
|
| 71 |
+
|
| 72 |
+
print("Serializing Model")
|
| 73 |
+
|
| 74 |
+
saved_model_path = "model.joblib"
|
| 75 |
+
|
| 76 |
+
joblib.dump(rand_search_cv.best_estimator_, saved_model_path)
|