Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Commit 
							
							·
						
						09dfd9b
	
0
								Parent(s):
							
							
Initial commit
Browse files- .gitattributes +33 -0
- README.md +18 -0
- app.py +125 -0
- examples/bed.png +0 -0
- requirements.txt +7 -0
    	
        .gitattributes
    ADDED
    
    | @@ -0,0 +1,33 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            *.7z filter=lfs diff=lfs merge=lfs -text
         | 
| 2 | 
            +
            *.arrow filter=lfs diff=lfs merge=lfs -text
         | 
| 3 | 
            +
            *.bin filter=lfs diff=lfs merge=lfs -text
         | 
| 4 | 
            +
            *.bz2 filter=lfs diff=lfs merge=lfs -text
         | 
| 5 | 
            +
            *.ftz filter=lfs diff=lfs merge=lfs -text
         | 
| 6 | 
            +
            *.gz filter=lfs diff=lfs merge=lfs -text
         | 
| 7 | 
            +
            *.h5 filter=lfs diff=lfs merge=lfs -text
         | 
| 8 | 
            +
            *.joblib filter=lfs diff=lfs merge=lfs -text
         | 
| 9 | 
            +
            *.lfs.* filter=lfs diff=lfs merge=lfs -text
         | 
| 10 | 
            +
            *.mlmodel filter=lfs diff=lfs merge=lfs -text
         | 
| 11 | 
            +
            *.model filter=lfs diff=lfs merge=lfs -text
         | 
| 12 | 
            +
            *.msgpack filter=lfs diff=lfs merge=lfs -text
         | 
| 13 | 
            +
            *.npy filter=lfs diff=lfs merge=lfs -text
         | 
| 14 | 
            +
            *.npz filter=lfs diff=lfs merge=lfs -text
         | 
| 15 | 
            +
            *.onnx filter=lfs diff=lfs merge=lfs -text
         | 
| 16 | 
            +
            *.ot filter=lfs diff=lfs merge=lfs -text
         | 
| 17 | 
            +
            *.parquet filter=lfs diff=lfs merge=lfs -text
         | 
| 18 | 
            +
            *.pb filter=lfs diff=lfs merge=lfs -text
         | 
| 19 | 
            +
            *.pickle filter=lfs diff=lfs merge=lfs -text
         | 
| 20 | 
            +
            *.pkl filter=lfs diff=lfs merge=lfs -text
         | 
| 21 | 
            +
            *.pt filter=lfs diff=lfs merge=lfs -text
         | 
| 22 | 
            +
            *.pth filter=lfs diff=lfs merge=lfs -text
         | 
| 23 | 
            +
            *.rar filter=lfs diff=lfs merge=lfs -text
         | 
| 24 | 
            +
            *.safetensors filter=lfs diff=lfs merge=lfs -text
         | 
| 25 | 
            +
            saved_model/**/* filter=lfs diff=lfs merge=lfs -text
         | 
| 26 | 
            +
            *.tar.* filter=lfs diff=lfs merge=lfs -text
         | 
| 27 | 
            +
            *.tflite filter=lfs diff=lfs merge=lfs -text
         | 
| 28 | 
            +
            *.tgz filter=lfs diff=lfs merge=lfs -text
         | 
| 29 | 
            +
            *.wasm filter=lfs diff=lfs merge=lfs -text
         | 
| 30 | 
            +
            *.xz filter=lfs diff=lfs merge=lfs -text
         | 
| 31 | 
            +
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 32 | 
            +
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 33 | 
            +
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,18 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            title: Image2mesh
         | 
| 3 | 
            +
            emoji: 👁
         | 
| 4 | 
            +
            colorFrom: green
         | 
| 5 | 
            +
            colorTo: blue
         | 
| 6 | 
            +
            python_version: 3.11
         | 
| 7 | 
            +
            sdk: gradio
         | 
| 8 | 
            +
            sdk_version: 4.36.1
         | 
| 9 | 
            +
            app_file: app.py
         | 
| 10 | 
            +
            pinned: false
         | 
| 11 | 
            +
            ---
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            ```
         | 
| 16 | 
            +
            pip install -r requirements.txt
         | 
| 17 | 
            +
            python3.11 app.py
         | 
| 18 | 
            +
            ```
         | 
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,125 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import gradio as gr
         | 
| 2 | 
            +
            import matplotlib.pyplot as plt
         | 
| 3 | 
            +
            import numpy as np
         | 
| 4 | 
            +
            import open3d as o3d
         | 
| 5 | 
            +
            import os
         | 
| 6 | 
            +
            from PIL import Image
         | 
| 7 | 
            +
            import tempfile
         | 
| 8 | 
            +
            import torch
         | 
| 9 | 
            +
            from transformers import GLPNImageProcessor, GLPNForDepthEstimation
         | 
| 10 | 
            +
             | 
| 11 | 
            +
             | 
| 12 | 
            +
            def predict_depth(image):
         | 
| 13 | 
            +
                # load and resize the input image
         | 
| 14 | 
            +
                new_height = 480 if image.height > 480 else image.height
         | 
| 15 | 
            +
                new_height -= (new_height % 32)
         | 
| 16 | 
            +
                new_width = int(new_height * image.width / image.height)
         | 
| 17 | 
            +
                diff = new_width % 32
         | 
| 18 | 
            +
                new_width = new_width - diff if diff < 16 else new_width + 32 - diff
         | 
| 19 | 
            +
                new_size = (new_width, new_height)
         | 
| 20 | 
            +
                image = image.resize(new_size)
         | 
| 21 | 
            +
             | 
| 22 | 
            +
                # prepare image for the model
         | 
| 23 | 
            +
                inputs = feature_extractor(images=image, return_tensors="pt")
         | 
| 24 | 
            +
             | 
| 25 | 
            +
                # get the prediction from the model
         | 
| 26 | 
            +
                with torch.no_grad():
         | 
| 27 | 
            +
                    outputs = model(**inputs)
         | 
| 28 | 
            +
                    predicted_depth = outputs.predicted_depth
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                output = predicted_depth.squeeze().cpu().numpy() * 1000.0
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                # remove borders
         | 
| 33 | 
            +
                pad = 16
         | 
| 34 | 
            +
                output = output[pad:-pad, pad:-pad]
         | 
| 35 | 
            +
                image = image.crop((pad, pad, image.width - pad, image.height - pad))
         | 
| 36 | 
            +
             | 
| 37 | 
            +
                return image, output
         | 
| 38 | 
            +
             | 
| 39 | 
            +
             | 
| 40 | 
            +
            def generate_mesh(image, depth_image, quality):
         | 
| 41 | 
            +
                width, height = image.size
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                # depth_image = (depth_map * 255 / np.max(depth_map)).astype('uint8')
         | 
| 44 | 
            +
                image = np.array(image)
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                # create rgbd image
         | 
| 47 | 
            +
                depth_o3d = o3d.geometry.Image(depth_image)
         | 
| 48 | 
            +
                image_o3d = o3d.geometry.Image(image)
         | 
| 49 | 
            +
                rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(image_o3d, depth_o3d,
         | 
| 50 | 
            +
                                                                                convert_rgb_to_intensity=False)
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                # camera settings
         | 
| 53 | 
            +
                camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
         | 
| 54 | 
            +
                camera_intrinsic.set_intrinsics(width, height, 500, 500, width / 2, height / 2)
         | 
| 55 | 
            +
             | 
| 56 | 
            +
                # create point cloud
         | 
| 57 | 
            +
                pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinsic)
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                # outliers removal
         | 
| 60 | 
            +
                cl, ind = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=20.0)
         | 
| 61 | 
            +
                pcd = pcd.select_by_index(ind)
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                # estimate normals
         | 
| 64 | 
            +
                pcd.estimate_normals()
         | 
| 65 | 
            +
                pcd.orient_normals_to_align_with_direction(orientation_reference=(0., 0., -1.))
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                # surface reconstruction
         | 
| 68 | 
            +
                mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(pcd, depth=quality, n_threads=1)[0]
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                # rotate the mesh
         | 
| 71 | 
            +
                rotation = mesh.get_rotation_matrix_from_xyz((np.pi, np.pi, 0))
         | 
| 72 | 
            +
                mesh.rotate(rotation, center=(0, 0, 0))
         | 
| 73 | 
            +
                mesh.scale(256, center=(0, 0, 0))
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                # save the mesh
         | 
| 76 | 
            +
                temp_name = next(tempfile._get_candidate_names()) + '.obj'
         | 
| 77 | 
            +
                o3d.io.write_triangle_mesh(temp_name, mesh)
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                return temp_name
         | 
| 80 | 
            +
             | 
| 81 | 
            +
             | 
| 82 | 
            +
            def predict(image, quality):
         | 
| 83 | 
            +
                image, depth_map = predict_depth(image)
         | 
| 84 | 
            +
                depth_image = (depth_map * 255 / np.max(depth_map)).astype('uint8')
         | 
| 85 | 
            +
                mesh_path = generate_mesh(image, depth_image, quality + 5)
         | 
| 86 | 
            +
                colormap = plt.get_cmap('plasma')
         | 
| 87 | 
            +
                depth_image = (colormap(depth_image) * 255).astype('uint8')
         | 
| 88 | 
            +
                depth_image = Image.fromarray(depth_image)
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                return depth_image, mesh_path
         | 
| 91 | 
            +
             | 
| 92 | 
            +
             | 
| 93 | 
            +
            feature_extractor = GLPNImageProcessor.from_pretrained("vinvino02/glpn-nyu")
         | 
| 94 | 
            +
            model = GLPNForDepthEstimation.from_pretrained("vinvino02/glpn-nyu")
         | 
| 95 | 
            +
             | 
| 96 | 
            +
             | 
| 97 | 
            +
            # GUI
         | 
| 98 | 
            +
            title = 'Image2Mesh'
         | 
| 99 | 
            +
            description = 'Demo based on my <a href="https://towardsdatascience.com/generate-a-3d-mesh-from-an-image-with-python' \
         | 
| 100 | 
            +
                          '-12210c73e5cc">article</a>. This demo predicts the depth of an image and then generates the 3D mesh. ' \
         | 
| 101 | 
            +
                          'Choosing a higher quality increases the time to generate the mesh. You can download the mesh by ' \
         | 
| 102 | 
            +
                          'clicking the top-right button on the 3D viewer. '
         | 
| 103 | 
            +
            examples = [[f'examples/{name}', 3] for name in sorted(os.listdir('examples'))]
         | 
| 104 | 
            +
             | 
| 105 | 
            +
            # example image source:
         | 
| 106 | 
            +
            # N. Silberman, D. Hoiem, P. Kohli, and Rob Fergus,
         | 
| 107 | 
            +
            # Indoor Segmentation and Support Inference from RGBD Images (2012)
         | 
| 108 | 
            +
             | 
| 109 | 
            +
            iface = gr.Interface(
         | 
| 110 | 
            +
                fn=predict,
         | 
| 111 | 
            +
                inputs=[
         | 
| 112 | 
            +
                    gr.Image(type='pil', label='Input Image'),
         | 
| 113 | 
            +
                    gr.Slider(1, 5, step=1, value=3, label='Mesh quality')
         | 
| 114 | 
            +
                ],
         | 
| 115 | 
            +
                outputs=[
         | 
| 116 | 
            +
                    gr.Image(label='Depth'),
         | 
| 117 | 
            +
                    gr.Model3D(label='3D Model', clear_color=[0.0, 0.0, 0.0, 0.0])
         | 
| 118 | 
            +
                ],
         | 
| 119 | 
            +
                examples=examples,
         | 
| 120 | 
            +
                allow_flagging='never',
         | 
| 121 | 
            +
                cache_examples=False,
         | 
| 122 | 
            +
                title=title,
         | 
| 123 | 
            +
                description=description
         | 
| 124 | 
            +
            )
         | 
| 125 | 
            +
            iface.launch()
         | 
    	
        examples/bed.png
    ADDED
    
    |   | 
    	
        requirements.txt
    ADDED
    
    | @@ -0,0 +1,7 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            gradio==4.36.1
         | 
| 2 | 
            +
            matplotlib==3.9.0
         | 
| 3 | 
            +
            numpy==1.26.4
         | 
| 4 | 
            +
            open3d==0.18.0
         | 
| 5 | 
            +
            Pillow==10.3.0
         | 
| 6 | 
            +
            torch==2.3.0
         | 
| 7 | 
            +
            transformers==4.41.0
         |