mahimairaja's picture
util: script to build dataset
1044a0a
raw
history blame
5.73 kB
import datetime
import io
import os
import random
import numpy as np
import rasterio
from datasets import Array2D, Features, Image, Value, load_dataset
from dotenv import load_dotenv
from pyproj import Transformer
load_dotenv()
ds = load_dataset("ibm-nasa-geospatial/hls_burn_scars", trust_remote_code=True)
ds_casted = ds.cast_column("image", Image(decode=False))
ds_annoted = ds_casted.cast_column("annotation", Image(decode=False))
def process_geotiff_data(geotiff_bytes):
"""
Processes raw GeoTIFF bytes to extract spectral bands, calculate NDVI,
and derive geospatial information.
"""
processed_data = {}
try:
with rasterio.open(io.BytesIO(geotiff_bytes)) as src:
band_blue = src.read(2).astype(np.float32)
band_green = src.read(3).astype(np.float32)
band_red = src.read(4).astype(np.float32)
band_nir = src.read(5).astype(np.float32)
band_swir = src.read(6).astype(np.float32)
processed_data["blue"] = band_blue
processed_data["green"] = band_green
processed_data["red"] = band_red
processed_data["nir"] = band_nir
processed_data["swir"] = band_swir
# Calculate NDVI
denominator = band_nir + band_red
denominator[denominator == 0] = 1e-6
ndvi = (band_nir - band_red) / denominator
ndvi = np.nan_to_num(ndvi, nan=0.0, posinf=0.0, neginf=0.0)
processed_data["ndvi"] = ndvi
# Extract geospatial metadata
crs = src.crs
transform = src.transform
# Calculate centroid
center_pixel_x = src.width / 2
center_pixel_y = src.height / 2
center_x_crs, center_y_crs = transform * (center_pixel_x, center_pixel_y)
if crs.is_projected:
transformer = Transformer.from_crs(crs, "EPSG:4326", always_xy=True)
centroid_lon, centroid_lat = transformer.transform(
center_x_crs, center_y_crs
)
else:
centroid_lon, centroid_lat = center_x_crs, center_y_crs
processed_data["centroid_lat"] = centroid_lat
processed_data["centroid_lon"] = centroid_lon
return processed_data
except Exception as e:
print(f"Error processing GeoTIFF: {e}")
return None
def calculate_burn_area(annotation_bytes):
"""
Calculates the burn area in hectares from the annotation mask.
Assumes HLS pixel size is 30m x 30m.
Value 1 = Burn Scar.
"""
try:
with rasterio.open(io.BytesIO(annotation_bytes)) as src:
mask = src.read(1)
burn_pixel_count = np.count_nonzero(mask == 1)
# 1 pixel = 900 m^2, 1 ha = 10,000 m^2
area_hectares = (burn_pixel_count * 900) / 10000
return float(area_hectares)
except Exception as e:
print(f"Error calculating burn area: {e}")
return 0.0
def synthesize_temporal_metadata():
"""Generates a random date between 2018 and 2021."""
start_date = datetime.datetime(2018, 1, 1)
end_date = datetime.datetime(2021, 12, 31)
days_between = (end_date - start_date).days
random_days = random.randrange(days_between)
random_date = start_date + datetime.timedelta(days=random_days)
random_date = random_date.replace(
hour=random.randint(0, 23),
minute=random.randint(0, 59),
second=random.randint(0, 59),
)
return random_date.isoformat(timespec="seconds") + "Z"
def process_sample_data(data_point):
"""
Extracts raw features and metadata.
Does NOT compute embeddings (students will do this).
"""
try:
img_bytes = data_point["image"]["bytes"]
annot_bytes = data_point["annotation"]["bytes"]
processed_geotiff = process_geotiff_data(img_bytes)
if processed_geotiff is None:
return {}
burn_area = calculate_burn_area(annot_bytes)
acquisition_date = synthesize_temporal_metadata()
return {
"annotation": data_point["annotation"],
"red": processed_geotiff["red"],
"green": processed_geotiff["green"],
"blue": processed_geotiff["blue"],
"nir": processed_geotiff["nir"],
"swir": processed_geotiff["swir"],
"ndvi": processed_geotiff["ndvi"],
"latitude": processed_geotiff["centroid_lat"],
"longitude": processed_geotiff["centroid_lon"],
"date": acquisition_date,
"burn_area": burn_area,
}
except Exception as e:
print(f"Error processing sample: {e}")
return {}
features = Features(
{
"annotation": Image(),
"red": Array2D(shape=(512, 512), dtype="float32"),
"green": Array2D(shape=(512, 512), dtype="float32"),
"blue": Array2D(shape=(512, 512), dtype="float32"),
"nir": Array2D(shape=(512, 512), dtype="float32"),
"swir": Array2D(shape=(512, 512), dtype="float32"),
"ndvi": Array2D(shape=(512, 512), dtype="float32"),
"latitude": Value("float64"),
"longitude": Value("float64"),
"date": Value("string"),
"burn_area": Value("float32"),
}
)
print("Processing dataset...")
ds_processed = ds_annoted.map(
process_sample_data,
remove_columns=["image"],
features=features,
writer_batch_size=100,
)
print("Processing complete. Sample keys:", ds_processed["train"][0].keys())
repo_id = "mahimairaja/ibm-hls-burn-original"
print(f"Pushing to {repo_id}...")
ds_processed.push_to_hub(repo_id, private=False, token=os.getenv("HF_TOKEN"))
print("Done!")