Spaces:
Runtime error
Runtime error
Commit
·
c399ca6
1
Parent(s):
3be9059
Attempt to use German.
Browse files
app.py
CHANGED
|
@@ -8,11 +8,26 @@ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Proce
|
|
| 8 |
|
| 9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 10 |
|
|
|
|
|
|
|
| 11 |
# load speech translation checkpoint
|
| 12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
| 13 |
|
| 14 |
# load text-to-speech checkpoint and speaker embeddings
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
processor = SpeechT5Processor.from_pretrained(tts_model)
|
| 17 |
|
| 18 |
model = SpeechT5ForTextToSpeech.from_pretrained(tts_model).to(device)
|
|
@@ -23,13 +38,14 @@ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze
|
|
| 23 |
|
| 24 |
|
| 25 |
def translate(audio):
|
| 26 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language":
|
| 27 |
return outputs["text"]
|
| 28 |
|
| 29 |
|
| 30 |
def synthesise(text):
|
| 31 |
inputs = processor(text=text, return_tensors="pt")
|
| 32 |
-
|
|
|
|
| 33 |
return speech.cpu()
|
| 34 |
|
| 35 |
|
|
@@ -41,8 +57,8 @@ def speech_to_speech_translation(audio):
|
|
| 41 |
|
| 42 |
|
| 43 |
title = "Cascaded STST"
|
| 44 |
-
description = """
|
| 45 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in
|
| 46 |
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
| 47 |
|
| 48 |

|
|
@@ -70,4 +86,4 @@ file_translate = gr.Interface(
|
|
| 70 |
with demo:
|
| 71 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
| 72 |
|
| 73 |
-
demo.launch()
|
|
|
|
| 8 |
|
| 9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 10 |
|
| 11 |
+
language = "de"
|
| 12 |
+
|
| 13 |
# load speech translation checkpoint
|
| 14 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
| 15 |
|
| 16 |
# load text-to-speech checkpoint and speaker embeddings
|
| 17 |
+
if language == "nl":
|
| 18 |
+
tts_model = "sanchit-gandhi/speecht5_tts_vox_nl"
|
| 19 |
+
language_name = "Dutch"
|
| 20 |
+
elif language == "fi":
|
| 21 |
+
tts_model = "crcdng/speecht5_finetuned_voxpopuli_fi"
|
| 22 |
+
language_name = "Finnish"
|
| 23 |
+
elif language == "fr":
|
| 24 |
+
tts_model = "Sandiago21/speecht5_finetuned_facebook_voxpopuli_french"
|
| 25 |
+
language_name = "French"
|
| 26 |
+
elif language == "de":
|
| 27 |
+
tts_model = "Salama1429/TTS_German_Speecht5_finetuned_voxpopuli_nl"
|
| 28 |
+
language_name = "German"
|
| 29 |
+
else:
|
| 30 |
+
raise NotImplementedError(f"No support for language {language}")
|
| 31 |
processor = SpeechT5Processor.from_pretrained(tts_model)
|
| 32 |
|
| 33 |
model = SpeechT5ForTextToSpeech.from_pretrained(tts_model).to(device)
|
|
|
|
| 38 |
|
| 39 |
|
| 40 |
def translate(audio):
|
| 41 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": language})
|
| 42 |
return outputs["text"]
|
| 43 |
|
| 44 |
|
| 45 |
def synthesise(text):
|
| 46 |
inputs = processor(text=text, return_tensors="pt")
|
| 47 |
+
max_length = processor.tokenizer.model_max_length
|
| 48 |
+
speech = model.generate_speech(inputs["input_ids"][:, :max_length].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
| 49 |
return speech.cpu()
|
| 50 |
|
| 51 |
|
|
|
|
| 57 |
|
| 58 |
|
| 59 |
title = "Cascaded STST"
|
| 60 |
+
description = f"""
|
| 61 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in {language_name}. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
|
| 62 |
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
| 63 |
|
| 64 |

|
|
|
|
| 86 |
with demo:
|
| 87 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
| 88 |
|
| 89 |
+
demo.launch(debug=True)
|